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Abstract. Exchange interaction between two lanthanide or actinide iond abhfiguration
bridged by common diamagnetic ligands is theoretically studied using a modified version of
the superexchange theory developed in this paper. Exchange spin Hamiltonians were calculated
for the MpL1p and MpL11 dimers serving as models of the°9and 180 f1—f! superexchange,
respectively. Spin—orbit coupling and crystal field splitting of thednfiguration (resulting in

the I'y ground Kramers doublet and the effective sfie= % of the metal ion), virtual transfers

of electrons of the type 4¢tA)—4f1(B) — 4f°(A)-4f1(B)5dL(B) via ns(L) and np(L) valent
orbitals of the bridging ligands, and exchange pathways in these dimers are considered in detail.
The .- superexchange is found to be extremely anisotropic and very sensitive to the geometry
of the dimer. The spin Hamiltonian of the Ui dimer is H = J,S% 5% + J, 83 5% + J. 5555,

where the exchange parameters are rationalized in ternis,ofind J,,, parameters referring,
respectively, to ther—o andz— pathways of the 4A) — np(L) — 5d(B) electron transfers,

Jo = 2Jp — Jug, Jy = Jno + Jzz and J; = —Jrs + Jzz. The Jr, and J;, values are
analytically expressed throughf|np) and (5djnp) overlap integrals, orbital energies and intra-
ionic Slater parameters. Exchange interaction betw&éors in the ML1; dimer is described

by an antiferromagnetic Ising Hamiltoniali = |J,,|S5S%, where thez axis connects two

metal ions. Unusual magnetic properties of MUJM = Li, Na, K and Rb) and LjUO, oxides
involving U+ (5f) ions and BaPre distorted perovskite are discussed in the light of these
theoretical results.

1. Introduction

Magnetic interactions between lanthanide or actinide ions (f ions) in non-metallic compounds
are unusual and very complicated. It is generally recognized that strong magnetic anisotropy
is an almost universal property of f-block-element compounds. Typical examples are rare-
earth ortho-aluminates LnAKJ1], garnets LRAIsO;, [2], fluorides(LiErF,) [3], chlorides
LnCl3 [4], hydroxides LifOH)3 [5] and some actinide compounds such as MUihd
M3UO4 (M = Li or Na) [6,7]. In some cases exchange interactions are so anisotropic
that they cannot be rationalized even qualitatively in terms of the conventional isotropic
Heisenberg Hamiltonian [8]. This is closely related to the unquenched orbital moment of f
electrons and strong spin—orbit coupling. Detailed discussions of these problems have been
given elsewhere [9].

Magnetic interactions between metal ions in insulators are usually described by
superexchange via intermediate ligands [10,11]. Although the general principles of the
superexchange mechanism are essentially the same for f and d ions, calculations of exchange
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parameters for lanthanides are more difficult than are those for transition metal compounds
because of the complicated electronic structureofidns in solids. As a consequence,

little is still known about specific mechanisms of exchange interactions in actual lanthanide
or actinide compounds despite exchange interactions between lanthanide ions in insulators
having been studied for many years [12-18].

The aim of this paper is to analyse in detail the superexchange mechanism for pairs
of f1 ions, the simplest exchange systems. We calculate exchange spin Hamiltonians for
MjL1o and MLy, dimers (figure 1), in which¥fions M are bridged by two and one
common ligands L, respectively. These dimers are convenient models to study-the f
superexchange for the 9and 180 geometries of the M—L—M bridges. By analogy with the
Goodenough—Kanamori rules for the>%®nd 180 superexchanges between d ions [19, 20],
the comparative study of exchange spin Hamiltonians for these two dimers can be very
informative for a deeper understanding of the nature of superexchange in lanthanides and,
particularly, the origin of strong exchange anisotropy.

(@ (b)

Figure 1. The structures of (a) W10 and (b) ML11 dimers.

The paper is organized as follows. In senti® a modified superexchange formalism
for many-electron lanthanide ions of effective sgin= % is developed. In section 3 this
theory is used for calculations of spin Hamiltonians for thg M and ML, f'—f' dimers.
We show that, for a correct description of tHeff superexchange, a number of important
factors should be taken into account, such as crystal field (CF) and spin—orbit splitting of the
f1 configuration, virtual transfers of electrons of the typ&-4ft — 4f°-4f5d via bridging
ligands, anisotropic overlap between metal and ligand orbitals, and specific electron transfer
pathways. We show that both9@nd 180 f1—f' superexchanges are very anisotropic despite
the g tensor of the ground electronic level of each ion being isotropic. This demonstrates
that strong exchange anisotropy in f systems is not necessarily due to the CF anisotropy. A
discussion is given in section 4, in which some experimental data on magnetic properties of
insulating compounds containing§ibns are considered in the light of the theoretical results
of this paper.
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2. The many-electron form of the superexchange theory for the effective spin S %

2.1. Preliminaries

It has become almost universal practice to use the second quantization technique in
theoretical studies of exchange interactions between magnetic ions in insulators [10-16].
At this point we show that, for lanthanide and actinide ions, the traditional superexchange
formalism based on the second quantization technique should be re-formulated in order to
take into account specific features of the electronic structure of the f shell. To determine
the requirements of this modified approach, we consider the main differences between the
superexchange mechanisms for f ions and for d ions.

According to the superexchange theory [10, 11], coupling between magnetic moments
of two metal ions A and B is due to virtual transfers of electrons of the type-AB
ATB~ — AB via common bridging ligands, which result in mixing of wavefunctions of
the ground homopolar state AB with wavefunctions of excited ‘ionic’ staté8A and
A~B*. For transition metal ions theoretical treatment of these charge-transfer processes is
simpler, because the strong CF splitting of d orbitals leads to the fact that wavefunctions
of transition metal ions are usually well described in the one-determinant approximation.
In this case each wavefunction is defined by the set of occupied d orbitals, so the charge
transfer process AB> ATB~ can be simply regarded as transfer of an electron froga)d
orbital of ion A to d(B) orbital of ion B. These processes are effectively treated by the
second quantization technique in terms of one-electron states.

The situation is, however, quite different for lanthanide and actinide ions. Except
in a few special cases, thé fshell is a strongly correlated electronic system, so its
wavefunction cannot be described by one Slater determinant, even to first approximation.
The ground state of a I} ion results from the CF splitting of the grountimanifold of
the relevant ¥ configuration and the corresponding wavefunction is a linear combination
of a large number of determinants. In addition, for a pair of lanthanide iod)h and
Ln(B)** charge-transfer processes AB A*B~ involve not only the basic configurations
4fNs+ and 4 but also configurations withW, + 1 and Nz + 1 electrons, such as
4fNa=1 0 AfNs=1 AfNap'l” or AfVsn'l’ (wheren'l” = 4f, 5d, 6s and so on). This leads
to the fact that charge-transfer transition for lanthanide ions is no longer a simple
electron transition between f orbitals(A) — f;(B), but should rather be regarded as a
transition between two many-electron states of the joint electronic system of the exchange
pair, W; (4fV+, 4fVs) — W, (4fVa~1 4fVsp'1’).  Therefore, it is desirable to modify the
superexchange theory for lanthanide ions in order to deal directly with many-electron
eigenfunctions of the unperturbed pair rather than with f orbitals. Unfortunately, the
second quantization technique is an ill-adapted one for this purpose because the second
qguantized Hamiltonian is written in terms of one- and two-electron matrix elements and
electron creation and annihilation operators associated with a certain one-electron basis set.
Description of AB— A*tB~ — AB processes for a strongly correlated electronic system in
terms of the second quantization technique leads to the necessity of considering numerous
elementary exchange processes (likeither, iy : hy, h : g and so on processes discussed
in the review of Stevens [14]) associated with transfers of electrons between individual
orbitals of magnetic ions and ligands. The main idea of our approach is to describe these
exchange processes in a global way in terms of many-electron states of the unperturbed
pair.

Like in any exchange theory, the first step is the determination of the unperturbed
Hamiltonian and the perturbation for a pair of lanthanide ions. The unperturbed Hamiltonian
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should be chosen so that it describes the actual wavefunctions of separate lanthanide ions in
the pair and is fully symmetrical with respect to interchanges of electrons. Usually only the
ground and the lowest excited CF levels of &Lion are involved in exchange interaction.

In this work we develop a modified exchange formalism for the most important case, in
which the ground CF state of an f ion is a Kramers doublet corresponding to the effective
ionic spin § = % It is important to note that CF splitting of manifolds for lanthanide

ions is of order 100 cmt and exchange parameters are normally of order within a few
reciprocal centimetres [1-5]. This implies that exchange interaction has very little influence
on wavefunctions of lanthanide ions which are formed under the combined action of intra-
ionic interactions (attraction to nuclei, electron—electron repulsion and spin—orbit coupling)
and the CF potential. It is therefore quite natural to use actual many-electron wavefunctions
of lanthanide ions in a crystal as basis functions, that implies the involvement of the CF
potential in the unperturbed Hamiltonian. These functions can be taken as antisymmetrized
products of many-electron eigenfunctions of CF states of individudl Lions. It has

been believed in some works [14] that the inclusion of the CF potential in the unperturbed
Hamiltonian makes distinguishable electrons belonging to different magnetic ions, so the
CF potential is incorporated into the perturbation. It should be pointed out, however, that
our approach is free from this disadvantage because using antisymmetrized many-electron
wavefunctions makes any Hamiltonian automatically symmetrical in electrons. Note also
that the incorporation of such different terms as the CF potentidlq0 cnt') and exchange
interaction ¢ 1 cnT!) into a unique perturbation term can lead to some unwanted problems
with convergence of the perturbation series. To ensure good convergence, the perturbation
Hamiltonian should involve only those interactions which cause -ABATB~ or A"B*
electron transfer processes responsible for superexchange.

Another problem concerns the treatment of ligand electronic states. Some authors
take into account the ligand’'s electrons together with electrons of magnetic ions in the
perturbation procedure. This has the disadvantage that exchange terms appear in higher
perturbation orders (fourth or even fifth) and, in addition, a part of the CF potential is
incorporated into the perturbation [15,16]. To avoid these difficulties, we follow the
approach [10, 11] in which ligand states are excluded from consideration by the replacement
of the actual unperturbed Hamiltonian by some effective unperturbed Hamiltonian acting
only within the sub-space of f states. This allows one to confine consideration to the
second-order perturbation.

Summarizing the aforesaid, we can formulate principles of the modified superexchange
theory for lanthanides.

(i) The perturbation procedure for spin Hamiltonian calculations is formulated in terms
of many-electron states of the unperturbed pair. For this reason we abandon the second
guantization technique.

(i) The spin Hamiltonian calculation procedure should lead directly to the exchange
spin Hamiltonian.

(iii) The CF potential is incorporated into the unperturbed Hamiltonian of a lanthanide
ion pair, while in the perturbation are involved only those interactions which are responsible
for electron transfers between magnetic ions.

(iv) The ligand’s electrons are not involved in the perturbation procedure.

In fact, this approach follows the principles of Anderson’s superexchange theory [10, 11],
according to which wavefunctions of CF levels of magnetic ions are determined beforehand
by spin Hamiltonian calculations and ligand states are excluded. It differs from the
traditional superexchange theory in that many-electron wavefunctions of magnetic ions
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are used rather than their one-electron states. Our modification is intended to adapt the
superexchange formalism to magnetic ions with strongly correlated electronic states, such
as lanthanide ions in crystals. Although ligand states are not involved directly in the
perturbation calculations, special care is taken to relate transfer integrals to the geometry
of Ln®"(A)-L-Ln*"(B) exchange bridges and to the electronic structure of the bridging
ligands.

2.2. The many-electron superexchange formalism

We consider an exchange pair, which involves two metal ions A and B bridged by common
diamagnetic ligands (namely non-metal ions having a closdp® electronic shell) and
some non-bridging ligands around each metal ion. To make the consideration more specific
(but without loss of generality), hereafter we imply only lanthanide ions. The following
general conditions are assumed.

(i) lons A and B have odd numbers of f electrong,(and N, respectively). The
ground CF state of each ion is a Kramers doublet that corresponds to the effective ionic
spin S = 3.

(i) Only the ground CF state of each ion is involved in exchange interaction. This
implies that the energy gap between the ground and first excited CF levels is much larger than
the exchange parameters, so interionic exchange interactions do not mix the wavefunctions
of the ground and excited CF states.

2.2.1. The unperturbed Hamiltonian and the perturbatio@onsider the full electronic
Hamiltonian of the exchange cluster (two metal ions A and B plus ligands) acting in
the Hilbert space, whose basis set consists of Slater determinants involving all possible
combinations of magnetically active spin orbitals of lanthanide ions A and B (4f, 5d and so
on), as well asis andnp valent orbitals of ligands. All atomic orbitals in the determinants
are assumed to be orthonormal. We use the well-known NDO (neglect of differential
overlap) approximation, according to which two orbitals belonging to different atoms are
orthogonal. This approximation is quite relevant to lanthanides because 4f orbitals overlap
poorly with the environment.

Define the sub-space X, the basis set of which incorporates all determinants satisfying
the following conditions.

(i) All valent spin orbitals of ligands are completely occupied by electrons; that is, each
ligand has a closeds’np® shell.

(i) The sumn(A) + n(B) = N4 + Np is fixed, wheren(A) andn(B) are the numbers
of electrons on metal ions A and B. The numbéA) can take the valued, — 1, N4 and
N4+ 1, andn(B) can beNg — 1, Nz or Np + 1.

(iii) To eachn(A) there corresponds a certain electronic configuration on ion A:

n(A)y =N, —1 4fNa—1
n(A) = Ny 4fNa
n(A)= N4 +1 4fVan'l
wheren'l’ = 4f, 5d, 6s and so on). The same is true for ion B.
The effective HamiltoniarH; of the exchange pair is obtained by projection of the

original HamiltonianH acting in the full Hilbert space onto the sub-space X defined above.
Formally, this projection corresponds to elimination of electronic variables of the ligand
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from consideration, because in the space X the electronic sub-system of ligands is described
by only one configuration with a closed?np® shell on each ligand. This, however, does
not distinguish between ligands’ and metals’ electrons because of the antisymmetry of the
wavefunctions of the basis set. Within the space X the HamiltoHiais equivalent to the
original HamiltonianH (in particular, their energy spectra are identical).

To define the effective unperturbed Hamiltonian and the perturbation, the space X is
divided into two sub-spacespéand X% (so that X= X1+ X5), the first of which corresponds
to wavefunctions of the basic homopolar state AB wittA) = N4 and n(B) = N3
(the 4fV+—4fVs configuration). Subspace,Xcorresponds to ionic statestB~ and A B+
(4fNa=1— afNep'l’ or 4fNan'1'-4fVs~1 configurations). We transfori; to the Hamiltonian
H, by H, = TH, T, whereT is a transformation diagonalizirtg, within each of the blocks
Xy and X%. The diagonal partHy) of H, is regarded as the unperturbed Hamiltonian, the
off-diagonal partH,3 as the perturbation,

Hy = Ho 4+ Hyp. 1)

Being defined in such a way, the unperturbed Hamiltortgninvolves all intra-ionic
interactions on each ion A and B (interaction with the core potential of lanthanide ions,
electron—electron repulsion and spin—orbit energy), as well as all metal-ligand interactions
responsible for CF splitting on each ion. In additiddy incorporates that part of the
interaction between ion& ) wWhich leaves unaltered the number®) andn(B) in ions

A and B. For basic homopolar states AB this interaction is reduced to electric multipole—
multipole interactions between 4f electrons on different ions, as well as to the direct exchange
interactionJ/, g, whose value is given by

o (r)*of (r2)* ¢ (ra)pf (r1)
Jag ”/

|r1 — 72

dTl d’l"2 (2)

where¢/ (1), ¢ (12), ¢ (r2) and ¢/ (r1) are 4f orbitals of ions A and B. For a typical

distance of 4A between two nearest lanthanide ions in an insulating crystalis negligibly

small because the produﬁ:lt‘(r)*qbf (r) is almost zero elsewhere. The situation is, however,
different for AtB~ and A"B™ states (sub-space,X In this caseg,p involves interaction
between the hole on ion A (the ! configuration) and the extra electron on ion B (the
4fNsp'l’ configuration). Although this interaction is largeryg ~ 1-2 eV) than multipole—
multipole or direct exchange interactions, it is however, significantly smaller than the energy
separation between AB and"8~ states £ 10 eV).

In fact, the HamiltonianHy describes the electronic states of two weakly coupled
lanthanide ions A and B, whose wavefunctions are very slightly affected by the neighbouring
metal ion. This means that the eigenfunctiondHgfare well approximated by products of
many-electron wavefunctiongs® and x# of individual ions A and B

W, (4FN4, AEVE) = 0 (4N 5 B (4fVr)
W, (47 AfNe /17y = 5 A(4FNa L) ) B(4fNen 1)
R R S S A L U BV E € i) ®)

where the double indexmn reflects the genealogy of the corresponding two-
ion wavefunction. To make all electrons indistinguishable, the wavefunctions are
antisymmetrized over all electronic variablegx? — [x2x5],,. Below we omit
the symbol of antisymmetrization. .[],s, implying that products of two single-ion
wavefunctions are always antisymmetrized.

The perturbationH, incorporates all interactions which cause electron transfers
AB — ATB~ or A"B*. Its matrix elementgW,, (4fV4, 4fVs)|H 4 g |W,,, (4FV4~1 4fNs /1))
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connect homopolar states AB with ionic state$BX or A~B* (by definition, all non-
vanishing matrix elements of this type are in the crossing of blocgkankl X in the space
X = X1 + X5). It is important to note thatl,z is mainly a one-electron operathr, z:

Ns+Np

Hap = Z hag(@i) 4

i=1

because matrix elements of its two-electron part are proportional to overlap integrals of
the type(4f(A)|n'l'(B)), which are negligibly small for two neighbouring lanthanide ions.
Therefore, matrix elementsly; (4fV+, 4f¥8) |H 45| W, (4FV24~1 4f¥55'1")) can be expressed

in terms of one-electron matrix elemen#; (A)|hAB|n/l;(B)) = t;;(4f, n'l'’) connecting 4f
orbitals of ion A andn'l’ orbitals of ion B. Quantities; are usually called transfer integrals
and their origin is discussed in section 2.4. Expand the single-ion wavefunggjbrasd

x5 into the series of Slater determinants

x4V =" C{(pa) Detpy)

Pa

x4y =" C(pp) Det(pp)

PB

X (471 =" 1 (qa) Det(qa)

ga

X2 @ n'l'y =3 CF () Detlup) (5)

where the sums run over vector indexes, pg, g4 andug, which are sets of quantum
numbers of 4f and’l’ orbitals involved in the corresponding Slater determinants(iet
Det(pp), Det(gs) and Detup):

pa = (4 (A), ... 4f, (A)

pp = (4f,(B), ... 4fy, (B))

qa = (4 (A), ... 4f, (A))

up = (4, (B), ... 4f,, (B), n’l,QNBH(B)). (6)

QuantitiesC¢ (pa), CE(ps), C2(ga) and CE(up) in (5) are the expansion coefficients.
Similarly, for two-ion wavefunctions we have

Wy (48, 4fV5) = 3" CA(pa)C/F (ps) Detlpa + ps)

Pas Ps

Wy, (4FV0 1 4R 1) = 3 " C(ga)CF (up) Detiga + up) ™

qs up
wherep, +pp andg, +up are vector indices of Slater determinants for the joint electronic
system A+ B:
pat+pp = Aa(A), .. My, (A), 4, (B), ... 4y, .\, (B)
qa +up = @A), .. 4, (A, 4, B), ... 4, (B), 1L, | (B)). (8)

We can therefore write
(Wia (464, 4EV9) [ H g5 W, (A AE 1)) = N3 S " O (pa)*Cf (P5)* i (qn)

PA PB 4qa Uup
xCP(us)(Detps + pp)|Hap| Detigs + up)). 9
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This sum is easy to calculate because the matrix eleni@u&p,+pg)|Haz| Det(ga+up))
are non-zero only if the determinants Qet + pp) and Detgs + up) differ from each
other by no more than two orbitals;44) andn/ljf(B)

(Det(pa + pplHap| Detlga +up)) = (4f; (A)|hapln'l;(B)) = 1;;(4f, n'l'). (10)

Note that the one-electron operatdy;, is equivalent to the well-known second quantized
‘kinetic’ operator widely used in theoretical studies of exchange interactions in insulators
[10-186].

2.2.2. The spin Hamiltonian calculation procedureDenoteg; = x4 (4fV)* andg; =
x& (4fVs)* for wavefunctions of the ground CF level of ions A and B (where superscripts
‘4’ and ‘—’ stand for two components of the ground Kramers doublets). Our aim is to
obtain an effective exchange Hamiltonidlg,; from the HamiltoniarH, = Ho+H 45, which
describes the energy spectrum of the pair of lanthanide ions in the vicinity of its ground
state.H,s; acts within the space of wavefunctions of the fourfold degenerate ground level
of the unperturbed HamiltoniaH,

Q1P PaPs  PiPs  Pa¥s- (11)
Because of the time-reversal symmetry, the Hamiltorkup, is to be invariant with
respect to the corresponding transformations of spis % components(g})* — ¢,
()" = —of, (91)* — ¢ and(pz)* — —¢j;. Therefore, within the basis set (1#i)/,
is represented by the following >4 4 matrix:

N X a ¢ d N2
o5l o X —d —c* 0 P5

Heff (pji_(pé - c* —d Y b ‘Pg‘ﬂé . (12)
V4P d* —c b* Y 0P8

This Hamiltonian can be obtained from the full effective Hamiltontdg+ H,3 (acting

in the space X= X; + Xy) by its projection onto the sub-space (11). BecaHsg has
no diagonal matrix elements, first-order perturbation does not contribute 4o In the
second-order perturbatiod, ;s is obtained with the well-known formula for degenerate
levels

PoHasP:HA5Po
Herr = ; T Ee—E (13)

Po=) Ino)nol  Pi=)_ln)nil

are projection operators for the ground lev& and excited levels;, respectively. The
latter are charge-transfer statesBv and A"B*, whose wavefunctions we denote for
brevity Q,..(A — B) = W,,,,(4fVa=1 4tNsp/'I'y and Q,,,(B — A) = W,,,, (4fNan'l’ 4fNs 1),
The matrix elements of the»44 matrix (12) of the exchange Hamiltoni&t) s, are defined
by the equation

where

(pq|Herrlrs) = — (PqIHAB| Qmn(A = B))(Qun(A — B)[Hap|rs)
eff Qun(A—B) Emn(A —> B)

(pQ|HAB|an(B — A (Qmn(B = A)Huplrs)
Enn(B — A)

(14)
Omn(B—A)
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wherep, r = ¢ andg, s = ¢i. The sums range over all charge-transfer stalgs(A —
B) and Q,,,(B — A). Quantitiesk,,,(A — B) and E,,,(B — A) in the denominators are
charge-transfer energies, which are the differences between eigenvalues of the unperturbed
HamiltonianHo for the ground state ¢i = x4 (4fV)*x & (4fV#)* and excited ionic states
Oun(A — B) = xn (AN~ B@afVen'l'y or Q,,(B — A) = xa(4FNn'l") x B(4fVe 1),
Matrix eIements(<pj<p§|HAB|an(A — B)) in the nominators of (14) are calculated with
equations (7) and (9). It is important to note that this perturbation series has a good
convergence, because in lanthanide systems transfer integ(dfsn’l’) are typically of
0.1 eV (see section 3.5), whereas charge-transfer energies are about 10 eV.

H.r; can be transformed to the conventional exchange spin Hamiltonian written in terms
of components of the effective spf= % of ions A and B, which are defined by

Sior =308 Sion =F1/297  Siey =*30r (15)
wheren = A or B. Using (12) and (15) we get
X+Y
H.r = TJrzz JuShSh+2 " DyuyShSy + A(Sa x Sp) (16)
I3 1234

wherep = x,y or z. The exchange parametefs, D,, and A are expressed through
matrix elements of the 4 4 matrix (12)

Jo=(@+a" +b+b"/2 D, = Dy, =i(a—a")/2
Jy=(—a—a*+b+b")/2 Dy, =D, =i(c—c"+d—-d")/2
J,=X-Y D,,=D;;=(c+c"+d+d*)/2

A, =i(d—d* —c+c)

Ay=c+c"—d-d"

A, =i(b* — b). (17)

Note that, according to (15), the quantization axesg andz for each ion are determined
by the choice of the wavefunctions] and¢} of components of Kramers doublets. This
choice should relate the effective spin to the magnetic moment of the lanthanide ion, so it
depends on the specific CF symmetry and orientations of the principal axeten$ors of
lanthanide ions A and B. In the general case, this problem is rather complicated (especially
for low CF symmetries) and is not discussed here. Below in this paper we deal only with
cubic symmetry of the CF potential, for which tlgetensor of the ground Kramers doublet
is isotropic and the magnetic moment of the lanthanide ion is simply proportional to the
effective spinS = % In this case the initial choice of the quantization axes is arbitrary and
their final orientation is determined under the condition that the resulting spin Hamiltonian

(16) is diagonal in spin components (see section 3.4.1).

2.3. A simple testing system

The efficiency of this approach can be illustrated for the simplest exchange pair of two
hydrogen-like atoms. Let each of the ions A and B have only one non-degenerate orbital
occupied by one electron(r) andb(r), respectively. For this system we can simply write

o5 = a(m)a, ¢, = a(r)B, ¢4 = b(r)a and gy = b(r)B for the wavefunctions of the
Kramers doublets, so the antisymmetrized two-ion wavefunctions (11) of the ground level
are

1
iy = 72[0(T1)b(r2) —a(ra)b(ry)]oiar
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1
Ya0p = 72[(61(7"1)5(1"2) —a(r2)b(ry)]p1p2
1
Proy = 72[61(7‘1)17(T2)0tlﬁ2 —a(r2)b(ry)azpi]

1
L5 = 72[“(7'1)1?(7'2)/310!2 — a(r2)b(ry) foay] (18)

wherer, anda,, = |%>, B =1|— %) are, respectively, coordinates and spin eigenfunctions
of the nth electron £ = 1 and 2).

There are only two wavefunctiong,,,(B — A) and Q,,,(A — B) referring to the
‘ionic’ states A'B™ and A"B~, in which two electrons are paired on ions A and B,

respectively,

1
oB—A)= 7261(?“1)61(?“2)(01152 —a2f1)

1
V2
The energies of these states d@fg and U4, respectively (which are often referred to as
Hubbard energies, describing repulsion between two electrons on the same ion). Matrix
elements(<pj<p§|HAB|Q(A — B)) are easily expressed in terms of the transfer integral
t = (alhp|b) (table 1). Using (14) we have

1 1 1 1
X=a=c=d=0 Y:—t2<+> b:t2< + ) (20)

QA — B) = —b(ry)b(r2) (@12 — a2p). (19)

Uy ' Ug
Finally, using (17), we find

P Y G X+y 12 1 1
Ty T e Uy Usg 2 2\U, Ug

D,=D,,=D,,=0 A, =A,=A, =0.

That is we obtain the usual antiferromagnetic Heisenberg spin Hamiltonian

1 1
He — 2t2 . _ _; S . S 21
1f <UA+UB> 3+S4+5p) (21)
as it should be for two exchange-coupled hydrogen-like atoms. In the particular case of
Uy = Up = U we have
1?2 4
Hepp=——+ —8S4-Ss. 22
rf U + g oA OB (22)

This result coincides with that obtained in [10, 11].

Table 1. (<pf<p§|HAB\Q,,M(A < B)) matrix elements for the exchange pair of hydrogen-like

atoms.

Omn(A < B)

charge Ground state
transfer

states PreE  eavs  Yiep  wAvh
A—B 0 0 t —t

B— A 0 0 t —t
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2.4. Bridging ligands, transfer integrals and superexchange pathways

In this section we develop a microscopic model to relate the transfer integrdighich

are one-electron matrix elements of the perturbation HamiltoHigs (4)) to the geometry

of the exchange pair and the electronic structure of magnetic ions and bridging ligands.
For two ions in direct contact with each other, the transfer integralsoincide with the
conventional resonance integrals, which connect atomic orbitakp, and¢; referring to
different ions,

p2
lij =¢&ij = / l.IJ:k (27)’1 + V(T‘)) (]5_/' dr. (23)

These values are common to quantum chemistry calculations and can be evaluated by
various methods. In particular, they can be computed from first principles or obtained using
different empirical methods such as the Wolfsberg—Helmholz approximation

K
&ij = 5 (EW) + E@))S (24)

where E(J);) and E(¢;) are the corresponding orbital energigs, is the overlap integral
between the; and¢; orbitals, andK is an empirical constant [21].

This problem is considerably complicated when going from a two-centre system to a
three-centre system like the lanthanide exchange pait (49—Ligand—Lr#+(B). In such
a system, electrons cannot transfer from ion A to ion B by passing through the bridging
ligand directly, because 4f atomic orbitals of different lanthanide ions overlap only with
the ns andnp valent orbitals of the ligand, whereas their direct overlap is negligible. As a
consequence, the Bh(A) — Ln3*(B) electron transfer process goes in two steps through
intermediate ionized states of the ligands. The general scheme of this virtual process is
shown in figure 2. Since typical ligands (such as, ©?~, CI~ and $~) have a closed
electronicns’np® shell, they cannot accept an extra electron. Instead, in the first step an
electron moves from the ligand L to the lanthanide ion B forming the ionizdp® or
ns’np® configuration to the ligand. In the second step, another electron transfers from the
lanthanide ion A to the ligand L, restoring the originafnp® configuration. The resulting
transfer integrals;; are evaluated in second-order perturbation through resonance integrals
and energies of electron transfer from the ligand to the lanthanideAidh,(L — Ln"),

. Z Eik(L — B)Ekj(A — L)
v AEj (L — Ln®h)

(25)

kens,np
This procedure is quite valid for lanthanide systems, in which the ligand—metal charge-
transfer energy\ E;x (L — Ln®") is normally much larger than the corresponding resonance
integrals,s;x (L — A) andeg; (L — B).

This model is not in conflict with the general approach developed in section 2.2, in
which all of the ligand’s orbitals are regarded as completely occupied and ligand electrons
are not considered. Indeed, in the scheme shown in figure 2 the number of electrons on
ligands is changed only in intermediate states, whereas all initial and final states have closed
electronic shells on ligands. This means that A-l-BA-L*T-B~ — AT—L-B~ processes
are transformed to direct transitions AB ATB~ upon the projectiotH — H; described
in section 2.2.

If there is more than one bridging ligand,L..,L,, then equation (25) is generalized

by

ligands
(L, — B)eni (A — L
==y, 3, ez DAoL (26)

T knanp AE; (L, — Ln3t)
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4™ nsZnps 4f™e

ORONO

ns — 4f or n'l'

np—4f or n'l'
N ns'np®  4f’B*!
4™ o nszngﬁ or Mooy
4f —ns
4f —np
Np+1
4™ ns2ppt
ns*np or4fNBn'l'

@ L ®

Figure 2. The general scheme of electron transfer processes in the (Ap-L-Ln3+(B)
exchange pair.

Each term in (26) corresponds to a certain electron transfer pathway. Note that the
resulting transfer integrals; (26) are additive for different pathways which involve different
ligands and different combinations of the initial, intermediate and final orbitald,n>* (A),
kel,andj e Ln3*(B). However, this is not true for the resulting exchange parameters
J,, D,y andA in the spin Hamiltonian (16), because contributions resulting from different
exchange pathways can differ both in magnitude and in sign, so some interference effects are
possible in the superexchange mechanism for ion pairs involving several bridging ligands.
Some of these effects were discussed earlier in [15,16]. Note that our approach is more
general because equation (26) in combination with relations (14) describes all possible
electron transfer mechanisms in the M(A)+, Lo, .. .L,)—M(B) exchange system involving
so-called ‘ring exchange’ and related processes [15, 16, 22].

Although this model is by no means a quantitative solution of the problem with
the transfer integrals, it nonetheless gives a useful background for a consistent analysis
of microscopic mechanisms of virtual transfers of electrons between magnetic ions via
intermediate-valent orbitals of ligands and allows evaluation of transfer integrailgerms
of such quantum-mechanical quantities as overlap integrals and orbital energies. In section 3
this model is used for the M.1o and MyL1; f1—f* dimers to select electron transfer pathways
giving non-vanishing contributions to the spin Hamiltonian and to calculate transfer integrals.

3. Mechanisms of ! superexchange interactions

Application of this superexchange theory to actual lanthanide compounds has the difficulty
that a large number of excited charge-transfer stadgs(A — B) are involved in
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calculations. For instance, for%#f — 4f2-4£5d electron transfer processes in a®Néd
Nd** pair this number is determined by the product of the numbers of states in%la@dif
4135d configurations, 9% 3640~ 300 000. This needs, therefore, numerical calculations.

In this paper we concentrate on the simplest case of-df &xchange pair, for which
an analytical study is still possible due to the comparatively small numbér,otA < B)
states. We consider Mo and MyL 11 dimers involving two equivalent lanthanide or actinide
ions M of f! configuration (such as &, PA*, Ut or Np®*). Each ion M is surrounded
by six ligands L forming a regular octahedron M(figure 1). These dimers correspond,
respectively, to the 90and 180 geometries of the M—L—M bridging groups, and they serve
as idealized models of exchange pairs in cubic crystals. In particular, thgeinetry
occurs for nearest cations in the rock-salt-type structure and thie defimetry is typical
of many cubic crystals, such as perovskites.

3.1. The ground electronic state ¢t ions

The ground state of art fon in an octahedral ligand environment is“%) Kramers doublet
originating from the CF splitting of the Iowéth/z manifold [23] (figure 3):
@ 3
D5 +) J6[| +3) — VB F 3. (27)
Wavefunctionsp* = |I'{"+) can be expressed through f orbitals @rbitals in the|m)
representation or f orbitals of the cubic basis set):

ot \/42(\/6f3ﬂ foa — /10f_1 8 + 5f_»a)
- j (2f oo+ 20f, 22 — Bifyyeer + 2F 2 y2y00)
- \/ 42(\/ 6f s —f o8 — /10fia + 5f28)
- 721 (—2f, oo + 20 ez + Bifyyo + 2Fo2)8) 28)

where thex, y andz axes are chosen as shown in figure 1.

In fact, the CF effect mixes wavefunctions of the grotijll level and excited™\” level
stemming from the upp€ir;,, manifold which contains,§, f,» and f= orbitals (figure 3).
This mixing is, however, rather small, even fdrdystems with strong CF effects, such as
UF; and UC[ complexes [24, 25], so it can be neglected to a first approximation.

3.2. Excited charge-transfer statéds' B~ and A~ B* of a f1—f* pair

In charge-transfer states*8~ of a fl—f! pair ion A has no electrons in the valence
shell whereas ion B has two electrons in thé &f 4fx/I’ configuration, 4%(A)—4(B)
or 4°(A)—4f(B)n'l'(B) (the same is true for the back transition AB A~B™). Therefore,
charge-transfer function@,,,(A — B) and Q,,,(B — A) coincide with the usual single-
ion wavefunctions of the relevant?br 4fn'l’ electronic configuration of ions B and A,
respectively. Below in this paper we take into account only the 4f5d configuration, which
seems to be the most important one for thef superexchange (contributions of 4f5d and
412 configurations are compared in section 3.5).

We assume that charge-transfer enerdigs(A — B) can be written a¥/ + E, (fd)
whereU is a constant and, (fd) is the energy of thath level of the 4f5d configuration
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572

\ o
Free f'-ion ML, octahedral complex

Figure 3. The splitting of energy levels of-fions in an octahedral crystal field.

(in the case of alff! pair, the double index:n in charge-transfer functiong,,,(A —
B) transforms to the single index because the index: vanishes for the empty %f
configuration).

The energy structure of the 4f5d configuration of a free lanthanide ion is mainly
determined by Coulomb interaction between 4f and 5d electrons, which is described by three
Coulomb F% (4f, 5d) and three exchangé%+1(4f, 5d) Slater parameters (wheke= 0, 1
and 2) [26]. The spin—orbit energy for 4f and 5d orbitals is of minor importance. The strong
CF effect splits the 5d level into the lower triply degeneraelével (5d.,, 5d,; and 5d,
orbitals) and the upper doubly degeneratdexel (5d. and 5d-_,. orbitals). In addition,

a small CF splitting occurs for 4f states. The energy structure of the 4f5d configuration is
therefore rather complicated, so a more simple model has to be used, which, on the one hand,
allows an analytical study and, on the other hand, reflects the main features of the energy
structure of the 4f5d configuration. This model is based on the following assumptions.

() Intra-ionic Coulomb interaction between 4f and 5d electrons is described by one
parameterUy; corresponding to the spherical part of the electron—electron repulsion
potential FO(4f, 5d), whereas the non-spherical paft’(4f, 5d) and F*(4f, 5d) parameters)
is neglected. In lanthanide ions, this parameter is typically ~ F°(4f, 5d) ~ 10 eV.

We also assume that thg;, parameter involves the energy difference between 4f and 5d
orbitals and the electron—hole interaction eneggy.

(i) Spin—orbit energies of 4f and 5d states as well as the CF splitting energy of the 4f
state ¢ 100 cnt?) are neglected.

(iii) The CF splitting 1D¢q between g and b, 5d levels is taken into account. The
CF effect increases the energy of thelevel by the value g and lowers the energy of
the b, level by 4Dg. This splitting is normally of order 10g ~ 2-3 eV for Lr** ions in
octahedral environment of six ligands [9].

(iv) Intra-ionic exchange interaction between 4f and 5d electrons is approximated by
one effective exchange parametey instead of three exchange paramet6*1(4f, 5d)
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(k =0, 1 and 2). In other words, we assume that the energy separation between triplet
states

1
V2
(where S1(M;) are triplet and spin function$;(+1) = a2, S1(0) = (182 + @2B1)/+4/2
and S1(—1) = B12) and the corresponding singlet states

1

3[f 0] S1(My) = —— (4 (r1)50k (2) — 4F)(12)50k (1)) S1 (M) (29)

'[fid] So = 245 (r2) + 4fi(r2)5d(r))So (30)
(where So = (x182 — a2B1)/4/2 is the singlet spin function) of the 4f5d configuration are
the same for either pair of And 5¢ orbitals (wherel = 3,2,..., -3 andk = xy, yz,

zx, z? andx? — y?) and is equal td,; which is estimated by;, ~ G1(4f, 5d) ~ 1-2 eV.
WavefunctionsQ,,, (A — B) and the corresponding charge-transfer energiggA < B)
are listed in table 2.

Table 2. WavefunctionsQ,,, (A — B) and charge-transfer energigs,, (A — B) of the MyL19
and ML 13 f1—f! exchange dimers (4f5d configuration on ion B).

State Wavefunction Energ¥,,,(A — B)

T 5 (¢ (11, 0195 (12, 02) — 9y (12, 02)9 (T1, 01) 0
ground state

8[f; ] S1(M;) Upqg — Ira — 4Dgq

triplet states %(4f1(r1)5dk(r2) — 4f;(r2)5d (1)) S1 (M) (k = xy, yz or zx)
Urq — Irqa + 6Dgq
(k = z2 or x2 — y?)

L[f; de]So Ura —4Dgq
singlet states ﬁ(4f,(r1)5dk(r2) + 4f; (r2)50 (1)) So (k = xy, yz or zx)
Urq +6Dgq

(k = z2 or x2 — y?)

The following notations are assumed:

o, = i%

1=3,2,..., -3,k =xy, yz,zx,zz or)czfy2
81D = enaz, $1(0) = (1//2) (12 + pro2)
S$1(=1) = 12

So = (1/4/2) (12 — Pro2).

3.3. Electron transfer pathways and transfer integrals in Mgl.1o and MoLq; f1-f1
dimers

We consider specific pathways of virtual transfers of electrons between 4f orbitals of ion A
and 5d orbitals of ion B via bridging ligands L in the;Myg and ML 1; dimers and evaluate

the corresponding; (4f, 5d) transfer integrals. Because only four of the seven f orbitals of
the cubic set are involved in the ground state wavefunctions (28), we need to derive transfer
integrals between these four 4f orbitals of the ion A (namely, 4f4f;2_2), 4f,2_2

and 4f,-_,2)) and five 5d orbitals of the ion B (5dand 5d-_,- e, orbitals and 5d,, 5d,.

and 5d, tp, orbitals). To do this, we use equation (26) in which the resonance integyals
between 4f and 5d orbitals of lanthanide ions asdnp ligand orbitals are evaluated with
equation (24). We should therefore consider in detail the overlap between the lanthanide 4f
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or 5d orbitals and the ligand’s valency orbitals in the octahedral specigs(figiures 4 and
5). Because of cubic symmetry, there are the following selection rules for non-vanishing
overlap integrals.

(i) 4f, 2,2, 4f 2,2 and 4f.._.» orbitals overlap withnp orbitals in w-type
fashion. This group of overlap integrals is parametrized via one pararfigtdf, np) =
(42— y2) I Py).

(i) 5d,,, 5d,, and 5d, orbitals overlap withup orbitals inz-type fashion (figures 4(a),
4(e) and 5),5;(5d, np) = (5d,,|np;).

(iif) 5d,. and 5d._,. orbitals overlap both with thep and with thens orbitals of
the ligand ino-type fashion (figures 4(b)—(d)}, (5d, np) = (5d.2|np,) and S, (5d, ns) =
(5d.2|ns).

Using the Wolfsberg—Helmholz approximation (24) wikh = 2 we can derive the
corresponding resonance integrajg(4f, np) ande; (5d, np) as

ik (4f, np) = (4f; |npy)[E (4F) + E(np)]
&1 (50, np) = (npe|Sd;)[E(5d) + E(np)] (31)

where E (4f), E(5d) and E (np) are the energies of the corresponding atomic orbitals. Note
that none of the 4f orbitals overlap with the ligands orbitals. This means that the ligand’s
ns orbitals play no part in superexchange pathways and do not contribute to the resulting
exchange parameters either inlMg or in M,L4; dimers.

Using equations (26) and (31) we can now define the transfer integrals between 4f and
5d orbitals as

ligands %
81‘]( (4f7 np)gkj (5ds np)
yEtsd == 3, > AE(L, — Ln3")
q kenp(Ly) q

_ ”%“ 3o AL Ly IS4 A)
T kernty) AE(L, — Ln®*")
x[E@4f) + EGp)ILE 5D + E@p)] (32)

where ligand—lanthanide electron transfer energigs(L, — Ln3) are assumed to be

the same both fornp(L,) — 4f(Ln®*") and fornp(L,) — 5d(Ln®*") transfers. They can

be approximated by the difference between the corresponding orbital enexdigs, —

Ln3") ~ E(4f) — E(np) ~ E(5d) — E(np). In particular, for oxide compounds we have
E2p) ~ —15 eV, E(4f) ~ —7 eV andAE(O* — Ln®") ~ 8 eV. It follows from

(32) that thez;(4f, 5d) transfer integral is only non-vanishing if there is at least one
4f(A) — np;(L,) — 5di(B) electron transfer pathway, in which théf;|np.(L,)) and
(npe(L,)|5d;) overlap integrals are simultaneously non-zero. This leads to some selection
rules for non-vanishing transfer integrals which are different for thee®@ 180 geometries

of the exchange pair.

3.3.1. The 90 geometry. Overlap integrals between 4f(A) and 5d(B) lanthanide and
np(L1) andnp(L,) ligand orbitals in the ML dimer expressed in terms of ti$e (4f, np),
S.(5d,np) and S,(5d, np) parameters are listed in table 3. Using these values and
equation (32), we can determine non-vanishing transfer integgaff—5d) through two
parameterd,,, and Ty,

S, (4f, np) S, (5d, np)

Tas == pL o Loy @D+ EGPIEGD +Eap] (339
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Figure 4. Electron transfer pathways and overlaps of 4f and 5d lanthanide orbitalgsaandd
np valency orbitals of the bridging ligands in theoM f'—f* dimer. The cases (a) and (e)
correspond to electron transfer pathwayéMf— np(L) — 5d(B) of =n type, whereas cases
(b), (c) and (d) correspond tec pathways (the resulting transfer integrgl(4f, 5d) of each
pathway is shown in the corresponding picture).



10568 V S Mironov

e
N\,

N

\ﬁ

}Sd -np T-overlap

np,
} 4f-np T-overlap aPp

A

(+_—7

5d-np TC-overlap

4f-np T-overlap

@

b

<%
o

=)
b‘ - T7t1€

4f

TTC "

QY
4‘5

(N

x(y2-72) A2y

(a) (b)

’ ® Li'B)
S— .y

Or

v

® LA

Figure 5. Electron transfer pathways and overlaps of 4f and 5d lanthanide orbitalssaadd

np valency orbitals of the bridging ligands in theoM; f1—f1 dimer. Tworx pathways are

shown which have non-vanishing transfer integrals.

Sz (4f, np) Sx (5d, np)
AE(L - Ln%hH)

The T,,, parameter corresponds to the electron transfer pathway in which the 4f(A) orbital
overlaps with the:p(L) orbital in -type fashion, whereas 5d(B) ang(L) orbitals overlap

in o-type fashion as is the case for the(Af,._,2, — np.(L1) — 5d(B).> pathway
(figure 4(b)). Similarly, theT,, parameter refers to a pathway in which both 4f(A) and 5d(B)
orbitals overlap with the intermediate ligandig(L) orbitals inz-type fashion, as is the
case for the 4#A),(,2_.2) — np,(L2) — 5d(B),, pathway (figure 4(a)). The corresponding
transfer integrals are given in table 4 and all electron transfer pathways resulting in non-
vanishing transfer integrals are shown in figures 4(a)—(e).

Tnr = — [E(4f) + Emp)][E(5d) + E(np)]. (330)

3.3.2. The 180geometry. There are only two pathways in theoM; dimer (both of

nwm type), HA), 22y = np(L) — 5dB)., and 4A), 2_2y — np,(L) — 5d(B),.
(figures 5(a) and (b)). As a result, 4f-5d transfer integrals are expressed only via one
parameterl, . (33b) (table 5).



Table 3. Overlap integrals between 4f and 5f metal orbitals ancandnp valent orbitals of the bridging ligands in the,Mp dimer.

Ligand orbitals

Metal

orbitals npx (L1) npy (L1) np; (L) npy (L2) npy (L2) np; (L2) ns (L1) ns (L2)
4fyyz (A) 0 0 0 0 0 0 0 0

Moo zA)  S.@Lap) 0 0 —S.(4f,np) 0 0 0 0

4,2 2A) 0O 0 0 0 S (4, np) 0 0 0

42 2A) 0 0 ~S.(4f,np) 0O 0 0 0 0

5d,, (B) 0 0 0 S.(5d,np) O 0 0 0

5dy;(B) 0 —Sz(5d, np) 0 0 0 Sy (5d, np) 0 0

5d,,(B) —S,(5d, np) 0 0 0 0 0 0 0

5d12(B) 0 0 S» (5d, np) 0 S5 (5d, np)/2 0 S5 (5d, ns) —S,(5d,np)/2
5dxz_y2(B) 0 0 0 0 S (5d, np)/3/2 0 0 —85(5d, n9)/3/2

sy@piueyiue| USaMIaq UonoeIaul abueydxaladng

69507
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Table 4. 1;; (4f, 5d) transfer integrals in the p.1o dimer.

4f;(A) orbitalst

5d;(B)

orbitals 4%, 4f 2 2 A2 2 4 2_y2)
50, 0 Tex (L2) O 0

5d,, 0 0 0 0

5d. . 0 Tnr (L) O 0

5d,2 0 0 —Txo /2 (L2) Tro (L)
5d2_,2 O 0 ~Tre+/3/2(L2) O

2 The ligand contributing to the corresponding non-vanishing transfer integral is indicated in
parentheses.

Table 5. #;; (4f, 5d) transfer integrals in the M.11 dimer.

4f; (A) orbitals

5d;(B)

orbitals 4%, 4f o 2 A a2 42y
5d,, 0 0 0 0

5d,, 0 0 Trr 0

50; . 0 —Trxn 0 0

5d.2 0 0 0 0
5d2_,2 O 0 0 0

3.4. Effective spin Hamiltonians of th&"—f! superexchange

Based on the above results we now derive effective spin Hamiltonians for theyMnd
ML, f1—f! exchange dimers. Using th@,.,(A — B) charge transfer wavefunctions from
table 2 we first caIcuIatQ¢§¢§|HAB|an(A — B)) two-ion matrix elements and then
derive the exchange parametdfs D,,, andA using charge transfer energigs, (A — B)

from table 2 and equations (14)—(17). Because ions A and B are equivalent, we take
into account AB~ states only and then multiply the result by a factor of two. Details of

calculation of the(<p§<p§|HAB |0 (A — B)) matrix elements are presented in the appendix.

3.4.1. Spin Hamiltonian of thé/,Lqo dimer. Using the 0,,,(A — B) wavefunctions
from table 2 and transfer integrals from table 4, we calculate matrix elements
(905 Ha| Qua(A — B)) for the ML 1 dimer (table 6). Replacing these matrix elements
into (14), we calculate the matrix elemer¥s Y, a, b, c andd of the effective exchange
HamiltonianH,ss (12) summing over 14@,,,(A — B) states of the 4f5d configuration:

4Tn26 < 3 1 )
X =- +
21 Ura —Ifd-l—GDq de—i-GDq

872, 29 Lo 13 )
441 de —Ifd —4Dq de —4Dq

4Tﬂ2(,< 3 1 )
Y =- +
21 de—Ifd+6Dq de+6Dq

812, 34 N 8
441 de —Ifd —4Dq de —4Dq
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Table 6. (9% |Hap| Qi (A — B)) two-ion matrix elements for the M 1o dimer.

Omn(A — B)

charge Ground state

transfer

states 2 0295 0105 0108
3[f3dy,]51(1) 0 0 0 0
3[f2d,,]S1(2) 0 0 0 —Trxi/2/21
8[f1dsy]51(D) 0 Trz/12/21 0 0

3[fo ] S1.(1) 0 0 0 0
S[f_1dylSi( O 0 0 0

3t 2dy]S1D) 0 0 0 Trr /50721
8[f_3dsy]S1(D) 0 —Tpz/20/21 0O 0
3[f3d,,]51(0) 0 0 0 Trx/6/21
3[f2 dyy]S1(0) Trr /21 Ty5/21 0 0

3[f1 dyy]151(0) 0 0 Trz /1021 O

3[fo dyy]52(0) 0 0 0 0
3f_1dy]5100 0 0 0 — Ty /10/21
3[](72 dxy]Sl(O) _Trrn5/21 _Trm/21 0 0
8[f_3d,,]$1(0) 0 0 —Trz /6/21 O
3f3de,]S1(—1) —Trzy/12/21 O 0 0
[f2dy]S2(-1) 0 0 —Tuzy/50/21 0
[f1d,]S1(-1) O 0 0 0
3[fodyy]S1(-1) 0 0 0 0
3f_1dy]S1(-1)  Trzy/20/21 O 0 0
3[f_2dy]S1(-1) 0 0 Tex/2/21 0
[f_3de,]S1(-D) O 0 0 0
Yf3dyy]S0 0 0 0 —Trr /621
f2dyy15 Trn /21 —~Trx5/21 0 0

Lf1 dyy]S0 0 0 Tez /1021 O

o dyy]So 0 0 0 0
Yf_1dy]5 0 0 0 Trr/10/21
Hf_2dyy]S0 —Ty5/21 Tyr /21 0 0
Hf_3dyy]S0 0 0 —Tnn/6/21 0
3[fad..]S1(D) 0 0 0 0
3[f2d..]S1(1) 0 0 0 —Tery2/21
3[f1d..]S1(D) 0 Tyr/12/21 0 0
3[fod..]S1(1) 0 0 0 0
f_1d.]51() 0 0 0 0
f_pd. ]S 0 0 0 Tx/50/21
[f_sd ]S O —Tyx/20/21 0 0
¥[f3d..]$1(0) 0 0 0 Trnv/6/21
3[f2d.]S1(0) Trr /21 T.5/21 0 0
3[f1d.]51(0) 0 0 T /1021 0O

3[f0 d:]51(0) 0 0 0 0
3f_1d..]81(0) O 0 0 —Tpn/10/21
3[f72 dz‘c]Sl(O) _Tnn5/21 - 71:1/21 0 0
[f_3d.,]$1(00 0 0 ~Tuxy/6/21 0

8[f3d, ]S1(=1) —Tyz4/12/21 O 0 0
f2d.]S1(-D) 0 0 —Tpr/50/21 0O

[f1d.]51(-D) 0 0 0 0

10571
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Table 6. (Continued)

an (A - B)

charge Ground state

transfer

states otop $195 " Pavs

3[fo d]S1(—1) 0 0 0 0
3[f_1d..]S1(-1)  Tery/20/21 O 0 0
S[f_20.,]S1(-1) 0 0 Tina/2/21 0
[f_3d..]S1(-1) O 0 0 0
fzd..]So 0 0 0 —Tyr/6/21
1[f2 dz,\']SO Trr/21 —Tzz5/21 0 0

1f1 d.«]S0 0 0 Trn/10/21 0
fod..]S0 0 0 0 0

1f_1 d.«]S0 0 0 0 Trn/10/21
1[f72 de]SO —T725/21 Trr /21 0 0

1[f—3 dzx]SO 0 0 - nn\/6/21 0

8[f3d,2] S1(D) 0 0 0 0

8[f2d.2] S1(D) Tro~/2/21 0 0 —iTy 5 /2/42
8[f1d,2] S1(D) 0 —iTyoA/20/42  Tpp/20/21 O

8[fod,2] S1(D) 0 0 0 0
8[f_1d,2]S1(D) 0 0 0 0
8[f_2d_2] S1(1) —Tre+/50/21 0O 0 I}y /50/42
8[f_3d,2]S1(D) 0 iTroA/12/42 —Tyo/12/21 0

8[f3d,2] $1(0) ~Tro~/6/21 0 0 iI5 /6/42
3[f2 d.2]51(0) —iTy, /42 iT7o5/42  —Tys5/21 Tro /21
8[f1d.2] $1(0) 0 Tron/10/21 —iTy54/10/42 0O

3[f0 d.2]51(0) 0 0 0 0
8[f_1d,2]S1(0) Tro/10/21 0 0 —iTy54/10/42
3[f_2d.2]51(0) iTrs5/42  —iTyy /42 Tro /21 —Tys5/21
8[f_3d,2]S1(0) 0 —Tro~/6/21 iTro+/6/42 0

8[f3d,2] S1(~1) iTro/12/42 0 0 —Tro+/12/21
8[f2d.2]S1(~1) 0 —Tro/50/21  iTys/50/42 O

8[f1d.2] S1(~1) 0 0 0 0
8[fod.2]S1(~1) 0 0 0 0
8[f_1d,2]81(-1) —iTrs+/20/42 O 0 Tro+/20/21
8[f_2d,2]S1(-1) 0 Tuo/2/21  —iTws/2/42 O
8[f_3d,2]S1(~1) 0 0 0 0
Uf3d,2]S0 Tro+/6/21 0 0 —iTy5/6/42
f2d.2]S0 —iTyo /42 —iTys5/42 Tvs5/21 Tro /21
1f1d,2]S0 0 Tro/10/21 —iTys+/10/42 0O
Ufod.2]S0 0 0 0 0
1f_1d,2]80 ~Tre/20/21 0O 0 o /10/42
Uf_2d.2]S0 iTrs5/42 iTyo /42 —Tro /21 —Trs5/21
1f_3d.2]S0 0 —Tro/6/21 iTro+/6/42 0
S[fad2_2]$1(1) O 0 0 0
3fod2_2]S2(1) O 0 0 —i Ty /6/42
3[f1d,2_,2]S1(D) 0 —iTre+/15/21 0O 0
8[fodya_,2]S1(D) 0 0 0 0

3[f,1 dxz;),z]Sl(l) 0 0 0 0
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Table 6. (Continued)
an (A — B)
charge Ground state
transfer
states 2 o o PA9s
3[f_2d,2_ 2] S1(D) 0 0 0 T o \/150/42
f 3d2 2]S1(1) O iTro /7 0 0
3[fad,2_,2]$1(0) 0 0 0 iTro/2/14
8[f2d2_,2]81(0) —iTrg/3/42 iTro/75/42 0 0
3[f1d,2_2]51(0) 0 0 —iTyo4/30/42 0
3[fg dxz,yz]Sl(O) 0 0 0 0
8[f_1d,2_,2]51(0) 0 0 0 —iTyq o/30/42
3[f_5d,2_,2]$1(0) iTro+/75/42 —iTzs/3/42 O 0
3[f_3d,2_ 2] S1(0) 0 0 iTro/2/14 0
3[fad,2_,2]S1(—1) Tuo /7 0 0 0
3[fad,2_,2]S1(—1) 0 0 iTro/150/42 0O
f1d2_2]81(-) O 0 0 0
3[f0 dxzfyz]Sl(—l) 0 0 0 0
f_1d2 2]S1(—1) —iTho/15/21 O 0 0
f 2d,2 2]S1(—-1) O 0 —iTy5/6/42 0
3[f 3d2_2]S1(-1) O 0 0 0
1[f3 dxz,yz]So 0 0 0 —iTro/2/14
Yfad,2_,2]S0 —iTro/3/42 —iTze/75/42 O 0
Yf1d2_2]S0 0 0 —iTys+/30/42 O
1fg dxz_yz]So 0 0 0 0
f_y d.2_ 2180 0 0 0 Ty A/30/42
Yf_2d.2_2]S0 iTwo/T5/42  iTps/3/42 O 0
Yf_ad.22]S0 0 0 iTroA/2/14 0
All (9pF9E|HAR|Qmn (A — B)) matrix elements involving the,d orbital vanish.
Jro  Jun Jro no
g = Jro _ Jaw p= "7 c=d=—-i"% 34
2 2 2 4 (34)
where
o 40772, 1 1 40 T2y (353)
T 441 \Uyy—1I;0+6Dg  Usg+6Dg 441Uy, + 6Dq)?
8072, 1 1 80 T2l (35)
T 441 \Upq— ;g —4Dq Uy —4Dq) 441Uy — 4Dg)?’

Using equation (17) we find the exchange parameters of the spin-Hamiltonian (16) of the
MsL 19 dimer

Jo—7 Jox J _Jnn J _Jnn
x — Jno 2 y = 2 z
Jro
Dy, % D,y = D,, = 0 Ar=Ay=A, = 0. (36)

It is seen from (36) that the resulting spin Hamiltonian of thel M f1—f* dimer contains
the non-diagonal term®,,,, S, S;. To diagonalize this spin Hamiltonian, we transform the
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x, y andz axes to newx’, y’ andz’ axes by an anticlockwise rotation about thexis by
the angle 4% as shown in figure 6. Upon this rotatidif components transform as

1 ’ ’ ! 1 / !
Sy =~ (§Y 4+ §° S =g Si=—(8) —8%). 37
n \/2( n + n) n n n JZ( n n) ( )
Omitting the spin-independent ter(X + Y)/2, we finally have
H=J,SySy + 1,8, Sy + J.S5 55 (38)
where
J,\{' = 2er — Jun J;' = Jno + Jun Jz/' = —Jro + Jax. (39)

The principal spin quantization axe§ y’ andz’ of the diagonalized spin Hamiltonian (38)
are shown in figure 6.

Figure 6. Spin quantization axes’, y’ and 7’ of the diagonalized spin Hamiltonian of the
M2L10fl—fl dimer.

It can be seen from (38) and (39) that the anisotropy of tHef8af! superexchange
is so pronounced that it is difficult to define whether the spin Hamiltonian (38) is
antiferromagnetic or ferromagnetic because the exchange constar(®9) may be of
opposite sign,

Jo >0 Jo <0
Jy >0 ¢ if Jro > Jon Jy >0 ¢ if Jon > 2J76. (40)
J, <0 J;, >0

It should be stressed that the contribution of an individda), (A < B) charge-transfer
state to the exchange parametdysis of order7? /U4, whereas the resulting exchange
parameters (35) are of a smaller order of magnitmg,[f-d/Uj?d. It can be seen from
(35) that theJ, values are the sum of two terms of ord&f, /U, which are similar in
magnitude but opposite in sign. This implies that@ll, (A < B) states should be involved
in the spin Hamiltonian calculation in order to obtain a physically consistent result.

3.4.2. The spin Hamiltonian for th&f,L; dimer. The spin Hamiltonian of the M.;; f'—

f! dimer is derived by the same procedure as that employed above for ghg, Mimer.
Again, using table 2 and transfer integrals from table 5, we calculate matrix elements
(0595 Hap| Qma(A < B)) (table 7). Making use of equation (14), we have

_ 8TZ, 29 L 13
441 de — Ifd — 4Dq de — 4Dq
8T? 34 8
Yy =-——F + (41)
441 de — Ifd — 4Dq de - 4Dq
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anda=b=c=d=0.
Using (17) we find

Jo=J,=0  D,=D,=D,=0 A=0  J=J, (42

whereJ, is defined by (38). Thus, we find that the 180'—f! superexchange is anisotropic
and described by the antiferromagnetic Ising spin Hamiltonian

X+Y
H= % + Jnn 8555 (43)

where thez axis direction connects ions A and B (figure 1(b)).

It can be seen from (35) that the CF splitting of 5d stateBd das a little influence on
the exchange parameters, siri¢g; > Dq. This is not surprising, because the CF potential
does not couple 4f and 5d states due to its one-body nature.

3.5. Estimation of thef'-f! superexchange parameters.

It is important to estimate the exchange parameters and to compare contributions of 4f5d and
4f2 configurations. We calculatgdf|2p) and (5d|2p) overlap integrals for oxide lanthanide
compounds using radial wavefunctions for 4f lanthanide orbitals and 2p oxygen orbitals
available in the literature [27, 28] and 5d lanthanide wavefunctions obtained from aXxgmic

SW calculations. We found that the maximum overlapsSai@f, 2p) ~ S, (4f, 2p) = 0.02—

0.03, S, (5d, 2p) = 0.15 andsS, (5d, 2p) = 0.1, respectively. Employing the typical orbital
energiesk (4f) = —7 eV, E(5d) = —5 eV andE(2p) = —15 eV, we find from (33) that

Tro ~ Try = t(4f,5d) =~ 0.1 eV andr (4f, 4f) ~ 0.02-0.03 eV. Assuming thdf;; = 10 eV

andl;; ~ G(4f, 5d) = 1-2 eV we get an estimation

2

J =~ m =(1-2 x 10* eV~ 1-2 cm! (44)

de
which is quite consistent with the experimental exchange parameters normally observed
in insulating lanthanide compounds [1-5]. Insofar as the role of 4f-4f charge transfers
in the superexchange mechanism is concerned, the resulting exchange parameters of order
J ~ t%(4f-4f)/ Uy are expected, wher@,, is the energy of the Coulomb repulsion between
two 4f electrons on one lanthanide ion. This energy is estimated4f, 4f) ~ 10 eV, so
usingt (4f, 4f) = 0.02-0.03 we have

2(4f, 4f
J 11,40

=(4-9 x 10° eV~ 0.5-1 cm™. (45)
Uy

We can therefore conclude that the 4f-5d and 4f-4f charge-transfer processes give
comparable contributions to the exchange parameters, so both these superexchange
mechanisms should be taken into account. In this paper, however, only the 4f-5d mechanism
has been considered.

In actinide compounds, 5f and 6d orbitals overlap with the ligand environment much
better than lanthanide 4f and 5d orbitals do (this is especially true for tetravalent and
pentavalent actinide compounds). As a consequence, similar calculations result in an
estimationJ ~ 10-30 cnt!, which is consistent with the available experimental data
(see below).
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Table 7. (9% |Hap| Qmn(A — B)) two-ion matrix elements for the M1q dimer.

Omn(A — B)

charge Ground state

transfer

states 9195 o 0195 N
3[f3d..]$1(D) 0 0 0 0
8[f2d,,]S1(1) 0 0 0 Trn/2/21
S[fl dzx]Sl(l) 0 Tnn \/20/21 0 0

3[fo d-] S1.(1) 0 0 0 0
S[f_1d,]S11) 0 0 0 0
8[f_2d,,]S1(D) 0 0 0 —Trn+/50/21
B[f—S dzx] Sl(l) 0 ~Tnn \/12/21 0 0
3[f3d.]S1(0) 0 0 0 —Tyrn/6/21
3[f2dzx]Sl(o) _Trzn/21 _Tnn5/21 0 0

B[fl dzx]sl(o) 0 0 Y 54 \/10/21 0

3[f0 ] 51(0) 0 0 0 0

3[f _1 d,,]51(0) 0 0 0 Ty +/10/21
3[f -2 dzx] 51(0) Trr 5/21 Trzrr/21 0 0

3[f _3d,,]51(0) 0 0 Trn/6/21 0

3[f3 dx]S1(=1) Trx \/12/21 0 0 0
8[f2d.,]S1(-1) O 0 Trn/50/21 0O
f1d..]S1(-D) O 0 0 0
3[fod.]S1(-1) 0 0 0 0
[f_10:x]S1(—1) —Trzv/20/21 O 0 0
8[f_5d.,]S1(-1) O 0 —Tun/2/21 0
3[f_3d..]S1(-1) O 0 0 0

1[f3 dz.\']SO 0 0 0 T,m\/ﬁ/Zl
1[f2 de]SO —Trr/21 Trr5/21 0 0
f1d..]So 0 0 ~Trz/10/21 0
Ufod.x]S0 0 0 0 0
Mf_1d:.]S0 0 0 0 —Trz+/10/21
1[f72 dzx]SO T:25/21 ~Trn/21 0 0

1[f -3 dzx] So 0 0 Tnn \/6/21 0

8[f3 dy,]S1(1) 0 0 0 0

8[f2 dy,]S1(1) 0 0 0 —iTyr/2/21
8[f1 dy,]S1(1) 0 —iTz/20/21 0O 0

3[fo dy,]S1(1) 0 0 0 0

8[f_1 dy]S2(1) 0 0 0 0
8[f_2dy]S1(1) 0 0 0 Tz /50/21
8[f_a dy]S2(1) 0 iTyz/12/21 0 0

3[f3 dy;]151(0) 0 0 0 i A/6/21
3[f2d,.151(0) —iTypr /21 iTr25/21 0 0

3[f1 dy;]51(0) 0 0 —iTy7/10/21 0O

3[fo dy.]151(0) 0 0 0 0

8[f_1 dy]51(0) 0 0 0 —iTyr/10/21
3[f_2d,.]151(0) iTrz5/21  —iTpz/21 0 0

3[f_3 dy]51(0) 0 0 iTrr/6/21 0O

3[f3 dy,]S1(~1) iThr/12/21 0 0 0
8[f2d,.]S1(~1) 0 0 iTrr/50/21 O
S[f1dy,]S2(-1) 0 0 0 0
3[fody.]S1(~1) 0 0 0 0
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Table 7. (Continued)

an(A - B)

charge Ground state

transfer

states oren R " Pavs
8[f_1dy]S1(=1) —iTwr/20/21 O 0 0
S[f_zdy]S1(=1) O 0 —iTyz/2/21 0O
8[f_3d,.]S1 (=) O 0 0 0

s dy.]1S0 0 0 0 —iTyr/6/21
12 dy.]1S0 —iTypr/21 —iTzz5/21 O 0
1[f1dy.]1S0 0 0 —iTyr,/10/21 O

o dy.]S0 0 0 0 0
Hf_1dy;]S0 0 0 0 iy /10/21
Hf_2dy.]S0 iT;25/21 iTyz/21 0O 0
Hf_3d,;]S0 0 0 iTrr/6/21 0

All (3¢5 IHaz|Qmn (A — B)) matrix elements involving the.d, d,2_ 2 or d., orbitals vanish.

4. Discussion

It can be seen from the above analysis that strong anisotropy ©fa@@ 180 f'—f!
superexchange is the result of a complex interplay of spin—orbit coupling, the CF effect,
intra-ionic exchange and Coulomb interactions between 4f and 5d electrons, and anisotropic
overlap between lanthanide 4f and 5d orbitals aid valent orbitals of the bridging
ligands. It is seen from the comparison between the spin Hamiltonians (38) and (43)
of the MyL1g and ML, dimers that the geometry of the dimer plays a decisive role in the
f1f! superexchange mechanism. In particular, thé*bh—Ln** angles and good overlap
between the lanthanide’s and the ligand’s orbitals in the dimers turns out to be even more
important than the L —Ln®*t distance. The symmetry of the ligand environment around
the lanthanide ions is also important because the CF effect forms wavefunpﬁcmw(p;

of the ground Kramers doublets. These results show that a strong exchange anisotropy in
f systems can occur even in the absence of the CF anisotropy and thus cannot be ascribed
only to the latter. Further complications of the exchange mechanism are expected for low
CF symmetries.

It should be noted once again that the spin Hamiltonian of thé& iy dimer is not
additive with respect to two bridging ligands. This could be shown from two independent
spin Hamiltonian calculations for the 1o dimer with one of the bridging ligands removed.

We found that the sum of two resulting spin Hamiltonians did not coincide with the total
spin Hamiltonian (38).

It is interesting to discuss magnetic properties of some compounds contatniogsf

in the light of the above results. Mixed uranium (V) oxides MyWhere M= Li, Na,

K or Rb) crystallize in the pervoskite-type structure, for which the M dimer serves as

a model cluster to describe the 28uperexchange interaction between two neighbouring
US+(5f1) ions. Similarly, the ML1o dimer is a model of the 90f'—f' superexchange in
LigUO4. This compound has a NaCl-type structure with a slight tetragonal distortion, in
which cationic sites are occupied by'Land Ut ions in the ratio 3:1 [6, 7].

There is an interesting correlation between the structure and magnetic properties of the
MUO3; compounds. KU@ and RbUQ crystallize in a regular cubic perovskite structure
and reveal no phase magnetic transitions in the magnetic susceptibility curves [7]. In
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contrast, NaU@ and LiUG; have distorted pervoskite structures [6, 7] and exhibit unusual
magnetic properties. Thus, there is a magnetic phase transitiop at 32 K in NaUG;
followed by a sharp peak in the magnetic susceptibility curve [6]. LlgW@s an unusual
magnetic transition af;,, ~ 19 K which is accompanied by a rapid increase in the magnetic
susceptibility in the vicinity of the transition point [29]. It is surprising that the magnetic
susceptibilities of NaU@and LiUO; below Ty depend on the applied magnetic field and
increase with its increase [6, 7]. A very similar behaviour has recently been found in BaPrO
(orthorhombically distorted perovskit&y = 11.5 K) [30]. This magnetic behaviour is quite
dissimilar to that of usual antiferromagnets and is indicative of strongly anisotropic 5f
5f1 exchange interactions in these compounds. Similar phenomena were also observed in
Li3UO4 (TN ~ 6 K) [29]

Unusual magnetic properties of these(®t) and Pr(4+) oxides can be qualitatively
rationalized in the light of the above results for the-ft superexchange. The spin
Hamiltonian of the high symmetry KU9and RbUQ perovskites is obtained by a
generalization of the 180f1—f! spin Hamiltonian (43),

H= Jm-[ Z (Sl ° Tl])(SJ * Tl]) (46)
)

7312

where the sum(ij) runs over all pairs of neighbouring fions in the simple cubic
lattice andr;; = r; — r; is a vector connecting ions and j. The Hamiltonian (46)

is formally antiferromagnetic and resembles the anisotropic part of the magnetic dipole—
dipole Hamiltonianuaug/r3,; — 3(narap)(prap)/r, albeit having the opposite sign

and being of quite different origin. Although the ground state of this Hamiltonian is
unknown, one has every reason to anticipate that spin fluctuations in this system are too
strong for a magnetically ordered state to exist, as is the case in one- and two-dimensional
antiferromagnets. We suggest therefore that this leads to the absence of magnetic ordering
in KUO3 and RbUQ. In contrast, deviations from the regular perovskite structure in
LiUO3, NaUG; and BaPr@would result in the appearance of the off-diagngLSij” and
antisymmetricalA (S; x S;) terms in the spin Hamiltonian which can cause magnetic ordering

of a complex non-collinear spin structure. This suggestion gives a reasonable explanation of
the field-dependence of the magnetic susceptibility in LiaUQO; and BaPrQ@ below Ty,
because an external magnetic field can have an effect on the angles between non-collinear
magnetic moments oftfions. A similar reason seems to be responsible for the magnetic
properties of LiUO,, whose exchange spin Hamiltonian is derived by a generalization of
the spin Hamiltonian (43) and is therefore even more complicated than (46).

5. Conclusion

A modified superexchange theory has been developed and used for a quantitative study of
exchange interactions between twoidns bridged by common diamagnetic ligands. We
have considered in detail the role of the CF effect, charge-transfer excited stalBss A
and A"B*, and superexchange pathways for the simplesand ML, f1—f! exchange
dimers. Spin Hamiltonians of the 9QM,L 1o dimer) and 180(M,L,,) f:—f* superexchange
are found to be extremely anisotropic. We have shown that this anisotropy is a result of
a complex combination of spin—orbit coupling, the CF effect, intra-ionic electron—electron
interactions and anisotropic overlaps between 4f and 5d lanthanide orbitalsparaent
orbitals of the bridging ligands.

To understand more of the basics of exchange interaction in f systems, we tried to
perform an analytical study for model systems rather than numerical calculations. However,
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further analysis of exchange interactions for many-electron f ions in actual lanthanide and
actinide compounds demands the development of numerical techniques.
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Appendix. Calculation of (¢ ¢5|HAB|Qmn(A — B)) two-ion matrix elements

We illustrate the calculation procedure for thg: g3 |Hag|Qma(A — B)) two-ion matrix
elements involved in (14). Consider a specific non-vanishing matrix element, say the
(91 @5 IHapI3[f20.2] S1(1)) one for the ML, dimer (table 6). Using table 2, we have

(@105 HAsP[f20:21S1()) = ((1//2) (@} (r1, 01)@} (r2, 02)
=@t (r2, 02)@ (r1, 01) Hap|(1//2)(F5 (1) d(12)
—f5 (r1) d%(r2)azaz)
= (¢} (r1, 01)@f (12, 02) [Haplf3 (1) A (r2)asarz)
—{@} (r1, 0@} (r2, 02)[Haglf5 (r2) d5(r)eaes) (A1)

SinceH,p is a one-electron operatdil sz = h45(1) + hsp(2), we can re-write (A.1) as
(@ (r1, o) N A (DIFS (ro)as) (9 (r2, 02)] A (r2)e2)

+(@i (r1, 00)[f3 (r)a) (@f (12, 02) W ap ()| A (r2)az)

—(@} (r1, 00)|hap(D)| di(rD)as) (@ (r2, 02)[f5 (r2)az)

(@} (r1, 01)| d%(r)aa) (@ (72, 02) |h A (2[5 (r2)az). (A2)

Because of the orthogonality relatiofs; (r1, 01)[f5 (r1)a1) =0 and(gy (r2, 02)| d%(r2)az)
= 0, only the third term in (A.2) is retained:

(0o IHap[f20.2]S1(1) = — (¢} (r1, o) [N as(D)] dZ(ro)an) (f (r2, 02) |5 (r2)az). (A.3)

It is convenient to express;, (r1, 01) via f orbitals of the cubic set and (r2, 02) via the
|Im) basis set from equation (28) in the text

1 . .
gi(ry,01) = \/721[2“?@2,12)(7‘1)51 + 20 o () pr = BifL (ran + 2 oo ()]

1
Qi(ra, 00) = Tﬂwefé‘f (r2)B2 — 15 (r2)az — /102 (1) B2 + 52 5 (r2)et2)]. (A.4)
Using the transfer integraf;‘(xz_yz)aﬂhAB(1)| d%a1) = Ty, from table 4 we get

+ haz(1)| d& _ 2 T, T f8 _ 1 A5
(pa (r1, 01)|hap (D) A (r)er) = 2l (@4 (r2, 0|5 (r2)az) = = a2 (A.5)
and, finally, we obtain
2
(@} 05 Has’[f20.2]S1(1)) = V2

21
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