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Abstract. Exchange interaction between two lanthanide or actinide ions of f1 configuration
bridged by common diamagnetic ligands is theoretically studied using a modified version of
the superexchange theory developed in this paper. Exchange spin Hamiltonians were calculated
for the M2L10 and M2L11 dimers serving as models of the 90◦ and 180◦ f1–f1 superexchange,
respectively. Spin–orbit coupling and crystal field splitting of the f1 configuration (resulting in
the 07 ground Kramers doublet and the effective spinS = 1

2 of the metal ion), virtual transfers
of electrons of the type 4f1(A)–4f1(B) → 4f0(A)–4f1(B)5d1(B) via ns(L) and np(L) valent
orbitals of the bridging ligands, and exchange pathways in these dimers are considered in detail.
The f1–f1 superexchange is found to be extremely anisotropic and very sensitive to the geometry
of the dimer. The spin Hamiltonian of the M2L10 dimer isH = JxSx

ASx
B + JyS

y

AS
y

B + JzS
z
ASz

B ,
where the exchange parameters are rationalized in terms ofJπσ andJππ parameters referring,
respectively, to theπ–σ andπ–π pathways of the 4f(A) → np(L) → 5d(B) electron transfers,
Jx = 2Jπσ − Jππ , Jy = Jπσ + Jππ and Jz = −Jπσ + Jππ . The Jπσ and Jππ values are
analytically expressed through〈4f|np〉 and〈5d|np〉 overlap integrals, orbital energies and intra-
ionic Slater parameters. Exchange interaction between f1 ions in the M2L11 dimer is described
by an antiferromagnetic Ising HamiltonianH = |Jππ |Sz

ASz
B , where thez axis connects two

metal ions. Unusual magnetic properties of MUO3 (M = Li, Na, K and Rb) and Li3UO4 oxides
involving U5+(5f1) ions and BaPrO3 distorted perovskite are discussed in the light of these
theoretical results.

1. Introduction

Magnetic interactions between lanthanide or actinide ions (f ions) in non-metallic compounds
are unusual and very complicated. It is generally recognized that strong magnetic anisotropy
is an almost universal property of f-block-element compounds. Typical examples are rare-
earth ortho-aluminates LnAlO3 [1], garnets Ln3Al 5O12 [2], fluorides(LiErF4) [3], chlorides
LnCl3 [4], hydroxides Ln(OH)3 [5] and some actinide compounds such as MUO3 and
M3UO4 (M = Li or Na) [6, 7]. In some cases exchange interactions are so anisotropic
that they cannot be rationalized even qualitatively in terms of the conventional isotropic
Heisenberg Hamiltonian [8]. This is closely related to the unquenched orbital moment of f
electrons and strong spin–orbit coupling. Detailed discussions of these problems have been
given elsewhere [9].

Magnetic interactions between metal ions in insulators are usually described by
superexchange via intermediate ligands [10, 11]. Although the general principles of the
superexchange mechanism are essentially the same for f and d ions, calculations of exchange
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parameters for lanthanides are more difficult than are those for transition metal compounds
because of the complicated electronic structure of fN ions in solids. As a consequence,
little is still known about specific mechanisms of exchange interactions in actual lanthanide
or actinide compounds despite exchange interactions between lanthanide ions in insulators
having been studied for many years [12–18].

The aim of this paper is to analyse in detail the superexchange mechanism for pairs
of f1 ions, the simplest exchange systems. We calculate exchange spin Hamiltonians for
M2L10 and M2L11 dimers (figure 1), in which f1 ions M are bridged by two and one
common ligands L, respectively. These dimers are convenient models to study the f1–f1

superexchange for the 90◦ and 180◦ geometries of the M–L–M bridges. By analogy with the
Goodenough–Kanamori rules for the 90◦ and 180◦ superexchanges between d ions [19, 20],
the comparative study of exchange spin Hamiltonians for these two dimers can be very
informative for a deeper understanding of the nature of superexchange in lanthanides and,
particularly, the origin of strong exchange anisotropy.

(a) (b)

Figure 1. The structures of (a) M2L10 and (b) M2L11 dimers.

The paper is organized as follows. In section 2 a modified superexchange formalism
for many-electron lanthanide ions of effective spinS = 1

2 is developed. In section 3 this
theory is used for calculations of spin Hamiltonians for the M2L10 and M2L11 f1–f1 dimers.
We show that, for a correct description of the f1–f1 superexchange, a number of important
factors should be taken into account, such as crystal field (CF) and spin–orbit splitting of the
f1 configuration, virtual transfers of electrons of the type 4f1–4f1 → 4f0–4f5d via bridging
ligands, anisotropic overlap between metal and ligand orbitals, and specific electron transfer
pathways. We show that both 90◦ and 180◦ f1–f1 superexchanges are very anisotropic despite
the g tensor of the ground electronic level of each ion being isotropic. This demonstrates
that strong exchange anisotropy in f systems is not necessarily due to the CF anisotropy. A
discussion is given in section 4, in which some experimental data on magnetic properties of
insulating compounds containing f1 ions are considered in the light of the theoretical results
of this paper.
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2. The many-electron form of the superexchange theory for the effective spin S= 1
2

2.1. Preliminaries

It has become almost universal practice to use the second quantization technique in
theoretical studies of exchange interactions between magnetic ions in insulators [10–16].
At this point we show that, for lanthanide and actinide ions, the traditional superexchange
formalism based on the second quantization technique should be re-formulated in order to
take into account specific features of the electronic structure of the f shell. To determine
the requirements of this modified approach, we consider the main differences between the
superexchange mechanisms for f ions and for d ions.

According to the superexchange theory [10, 11], coupling between magnetic moments
of two metal ions A and B is due to virtual transfers of electrons of the type AB→
A+B− → AB via common bridging ligands, which result in mixing of wavefunctions of
the ground homopolar state AB with wavefunctions of excited ‘ionic’ states A+B− and
A−B+. For transition metal ions theoretical treatment of these charge-transfer processes is
simpler, because the strong CF splitting of d orbitals leads to the fact that wavefunctions
of transition metal ions are usually well described in the one-determinant approximation.
In this case each wavefunction is defined by the set of occupied d orbitals, so the charge
transfer process AB→ A+B− can be simply regarded as transfer of an electron from di (A)

orbital of ion A to dj (B) orbital of ion B. These processes are effectively treated by the
second quantization technique in terms of one-electron states.

The situation is, however, quite different for lanthanide and actinide ions. Except
in a few special cases, the fN shell is a strongly correlated electronic system, so its
wavefunction cannot be described by one Slater determinant, even to first approximation.
The ground state of a Ln3+ ion results from the CF splitting of the groundJ manifold of
the relevant fN configuration and the corresponding wavefunction is a linear combination
of a large number of determinants. In addition, for a pair of lanthanide ions Ln(A)3+ and
Ln(B)3+ charge-transfer processes AB→ A+B− involve not only the basic configurations
4fNA and 4fNB but also configurations withNA ± 1 and NB ± 1 electrons, such as
4fNA−1, 4fNB−1, 4fNAn′l′ or 4fNB n′l′ (where n′l′ = 4f, 5d, 6s and so on). This leads
to the fact that charge-transfer transition for lanthanide ions is no longer a simple
electron transition between f orbitals fi (A) → fj (B), but should rather be regarded as a
transition between two many-electron states of the joint electronic system of the exchange
pair, 9i(4fNA, 4fNB ) → 9j(4fNA−1, 4fNB n′l′). Therefore, it is desirable to modify the
superexchange theory for lanthanide ions in order to deal directly with many-electron
eigenfunctions of the unperturbed pair rather than with f orbitals. Unfortunately, the
second quantization technique is an ill-adapted one for this purpose because the second
quantized Hamiltonian is written in terms of one- and two-electron matrix elements and
electron creation and annihilation operators associated with a certain one-electron basis set.
Description of AB→ A+B− → AB processes for a strongly correlated electronic system in
terms of the second quantization technique leads to the necessity of considering numerous
elementary exchange processes (like theh : h, hs : hs , h : g and so on processes discussed
in the review of Stevens [14]) associated with transfers of electrons between individual
orbitals of magnetic ions and ligands. The main idea of our approach is to describe these
exchange processes in a global way in terms of many-electron states of the unperturbed
pair.

Like in any exchange theory, the first step is the determination of the unperturbed
Hamiltonian and the perturbation for a pair of lanthanide ions. The unperturbed Hamiltonian
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should be chosen so that it describes the actual wavefunctions of separate lanthanide ions in
the pair and is fully symmetrical with respect to interchanges of electrons. Usually only the
ground and the lowest excited CF levels of a Ln3+ ion are involved in exchange interaction.
In this work we develop a modified exchange formalism for the most important case, in
which the ground CF state of an f ion is a Kramers doublet corresponding to the effective
ionic spin S = 1

2. It is important to note that CF splitting ofJ manifolds for lanthanide
ions is of order 100 cm−1 and exchange parameters are normally of order within a few
reciprocal centimetres [1–5]. This implies that exchange interaction has very little influence
on wavefunctions of lanthanide ions which are formed under the combined action of intra-
ionic interactions (attraction to nuclei, electron–electron repulsion and spin–orbit coupling)
and the CF potential. It is therefore quite natural to use actual many-electron wavefunctions
of lanthanide ions in a crystal as basis functions, that implies the involvement of the CF
potential in the unperturbed Hamiltonian. These functions can be taken as antisymmetrized
products of many-electron eigenfunctions of CF states of individual Ln3+ ions. It has
been believed in some works [14] that the inclusion of the CF potential in the unperturbed
Hamiltonian makes distinguishable electrons belonging to different magnetic ions, so the
CF potential is incorporated into the perturbation. It should be pointed out, however, that
our approach is free from this disadvantage because using antisymmetrized many-electron
wavefunctions makes any Hamiltonian automatically symmetrical in electrons. Note also
that the incorporation of such different terms as the CF potential (≈ 100 cm−1) and exchange
interaction (≈ 1 cm−1) into a unique perturbation term can lead to some unwanted problems
with convergence of the perturbation series. To ensure good convergence, the perturbation
Hamiltonian should involve only those interactions which cause AB→ A+B− or A−B+

electron transfer processes responsible for superexchange.
Another problem concerns the treatment of ligand electronic states. Some authors

take into account the ligand’s electrons together with electrons of magnetic ions in the
perturbation procedure. This has the disadvantage that exchange terms appear in higher
perturbation orders (fourth or even fifth) and, in addition, a part of the CF potential is
incorporated into the perturbation [15, 16]. To avoid these difficulties, we follow the
approach [10, 11] in which ligand states are excluded from consideration by the replacement
of the actual unperturbed Hamiltonian by some effective unperturbed Hamiltonian acting
only within the sub-space of f states. This allows one to confine consideration to the
second-order perturbation.

Summarizing the aforesaid, we can formulate principles of the modified superexchange
theory for lanthanides.

(i) The perturbation procedure for spin Hamiltonian calculations is formulated in terms
of many-electron states of the unperturbed pair. For this reason we abandon the second
quantization technique.

(ii) The spin Hamiltonian calculation procedure should lead directly to the exchange
spin Hamiltonian.

(iii) The CF potential is incorporated into the unperturbed Hamiltonian of a lanthanide
ion pair, while in the perturbation are involved only those interactions which are responsible
for electron transfers between magnetic ions.

(iv) The ligand’s electrons are not involved in the perturbation procedure.

In fact, this approach follows the principles of Anderson’s superexchange theory [10, 11],
according to which wavefunctions of CF levels of magnetic ions are determined beforehand
by spin Hamiltonian calculations and ligand states are excluded. It differs from the
traditional superexchange theory in that many-electron wavefunctions of magnetic ions
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are used rather than their one-electron states. Our modification is intended to adapt the
superexchange formalism to magnetic ions with strongly correlated electronic states, such
as lanthanide ions in crystals. Although ligand states are not involved directly in the
perturbation calculations, special care is taken to relate transfer integrals to the geometry
of Ln3+(A)–L–Ln3+(B) exchange bridges and to the electronic structure of the bridging
ligands.

2.2. The many-electron superexchange formalism

We consider an exchange pair, which involves two metal ions A and B bridged by common
diamagnetic ligands (namely non-metal ions having a closedns2np6 electronic shell) and
some non-bridging ligands around each metal ion. To make the consideration more specific
(but without loss of generality), hereafter we imply only lanthanide ions. The following
general conditions are assumed.

(i) Ions A and B have odd numbers of f electrons (NA and NB , respectively). The
ground CF state of each ion is a Kramers doublet that corresponds to the effective ionic
spin S = 1

2.
(ii) Only the ground CF state of each ion is involved in exchange interaction. This

implies that the energy gap between the ground and first excited CF levels is much larger than
the exchange parameters, so interionic exchange interactions do not mix the wavefunctions
of the ground and excited CF states.

2.2.1. The unperturbed Hamiltonian and the perturbation.Consider the full electronic
Hamiltonian of the exchange cluster (two metal ions A and B plus ligands) acting in
the Hilbert space, whose basis set consists of Slater determinants involving all possible
combinations of magnetically active spin orbitals of lanthanide ions A and B (4f, 5d and so
on), as well asns andnp valent orbitals of ligands. All atomic orbitals in the determinants
are assumed to be orthonormal. We use the well-known NDO (neglect of differential
overlap) approximation, according to which two orbitals belonging to different atoms are
orthogonal. This approximation is quite relevant to lanthanides because 4f orbitals overlap
poorly with the environment.

Define the sub-space X, the basis set of which incorporates all determinants satisfying
the following conditions.

(i) All valent spin orbitals of ligands are completely occupied by electrons; that is, each
ligand has a closedns2np6 shell.

(ii) The sumn(A) + n(B) = NA + NB is fixed, wheren(A) andn(B) are the numbers
of electrons on metal ions A and B. The numbern(A) can take the valuesNA − 1, NA and
NA + 1, andn(B) can beNB − 1, NB or NB + 1.

(iii) To eachn(A) there corresponds a certain electronic configuration on ion A:

n(A) = NA − 1 4fNA−1

n(A) = NA 4fNA

n(A) = NA + 1 4fNAn′l′

wheren′l′ = 4f, 5d, 6s and so on). The same is true for ion B.

The effective HamiltonianH1 of the exchange pair is obtained by projection of the
original HamiltonianH acting in the full Hilbert space onto the sub-space X defined above.
Formally, this projection corresponds to elimination of electronic variables of the ligand
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from consideration, because in the space X the electronic sub-system of ligands is described
by only one configuration with a closedns2np6 shell on each ligand. This, however, does
not distinguish between ligands’ and metals’ electrons because of the antisymmetry of the
wavefunctions of the basis set. Within the space X the HamiltonianH1 is equivalent to the
original HamiltonianH (in particular, their energy spectra are identical).

To define the effective unperturbed Hamiltonian and the perturbation, the space X is
divided into two sub-spaces X1 and X2 (so that X= X1+X2), the first of which corresponds
to wavefunctions of the basic homopolar state AB withn(A) = NA and n(B) = NB

(the 4fNA–4fNB configuration). Subspace X2 corresponds to ionic states A+B− and A−B+

(4fNA−1– 4fNB n′l′ or 4fNAn′l′–4fNB−1 configurations). We transformH1 to the Hamiltonian
H2 by H2 = TH1T−1, whereT is a transformation diagonalizingH1 within each of the blocks
X1 and X2. The diagonal part(H0) of H2 is regarded as the unperturbed Hamiltonian, the
off-diagonal partHAB as the perturbation,

H2 = H0 + HAB. (1)

Being defined in such a way, the unperturbed HamiltonianH0 involves all intra-ionic
interactions on each ion A and B (interaction with the core potential of lanthanide ions,
electron–electron repulsion and spin–orbit energy), as well as all metal–ligand interactions
responsible for CF splitting on each ion. In addition,H0 incorporates that part of the
interaction between ions(gAB) which leaves unaltered the numbersn(A) andn(B) in ions
A and B. For basic homopolar states AB this interaction is reduced to electric multipole–
multipole interactions between 4f electrons on different ions, as well as to the direct exchange
interactionJAB , whose value is given by

JAB ≈
∫

φA
i (r1)

∗φB
j (r2)

∗φA
i (r2)φ

B
j (r1)

|r1 − r2| dr1 dr2 (2)

whereφA
i (r1), φB

j (r2), φA
i (r2) and φB

j (r1) are 4f orbitals of ions A and B. For a typical

distance of 4Å between two nearest lanthanide ions in an insulating crystal,JAB is negligibly
small because the productφA

i (r)∗φB
j (r) is almost zero elsewhere. The situation is, however,

different for A+B− and A−B+ states (sub-space X2). In this casegAB involves interaction
between the hole on ion A (the 4fNA−1 configuration) and the extra electron on ion B (the
4fNB n′l′ configuration). Although this interaction is larger (gAB ≈ 1–2 eV) than multipole–
multipole or direct exchange interactions, it is however, significantly smaller than the energy
separation between AB and A+B− states (≈ 10 eV).

In fact, the HamiltonianH0 describes the electronic states of two weakly coupled
lanthanide ions A and B, whose wavefunctions are very slightly affected by the neighbouring
metal ion. This means that the eigenfunctions ofH0 are well approximated by products of
many-electron wavefunctionsχA andχB of individual ions A and B

9nm(4fNA, 4fNB ) = χA
m(4fNA)χB

n (4fNB )

9mn(4fNA−1, 4fNB n′l′) = χA
m(4fNA−1)χB

n (4fNB n′l′)
9mn(4fNAn′l′, 4fNB−1) = χA

m(4fNAn′l′)χB
n (4fNB−1) (3)

where the double indexmn reflects the genealogy of the corresponding two-
ion wavefunction. To make all electrons indistinguishable, the wavefunctions are
antisymmetrized over all electronic variables,χA

mχB
n → [χA

mχB
n ]as . Below we omit

the symbol of antisymmetrization [. . .]as , implying that products of two single-ion
wavefunctions are always antisymmetrized.

The perturbationHAB incorporates all interactions which cause electron transfers
AB → A+B− or A−B+. Its matrix elements〈9kl(4fNA, 4fNB )|HAB |9mn(4fNA−1, 4fNB n′l′)〉
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connect homopolar states AB with ionic states A+B− or A−B+ (by definition, all non-
vanishing matrix elements of this type are in the crossing of blocks X1 and X2 in the space
X = X1 + X2). It is important to note thatHAB is mainly a one-electron operatorhAB :

HAB =
NA+NB∑

i=1

hAB(i) (4)

because matrix elements of its two-electron part are proportional to overlap integrals of
the type〈4f(A)|n′l′(B)〉, which are negligibly small for two neighbouring lanthanide ions.
Therefore, matrix elements〈9kl(4fNA, 4fNB )|HAB |9mn(4fNA−1, 4fNB n′l′)〉 can be expressed
in terms of one-electron matrix elements〈4fi (A)|hAB |n′l′j (B)〉 = tij (4f, n′l′) connecting 4f
orbitals of ion A andn′l′ orbitals of ion B. Quantitiestij are usually called transfer integrals
and their origin is discussed in section 2.4. Expand the single-ion wavefunctionsχA

m and
χB

n into the series of Slater determinants

χA
k (4fNA) =

∑
pA

CA
k (pA) Det(pA)

χB
l (4fNB ) =

∑
pB

CB
l (pB) Det(pB)

χA
m(4fNA−1) =

∑
qA

CA
m(qA) Det(qA)

χB
n (4fNB n′l′) =

∑
uB

CB
n (uB) Det(uB) (5)

where the sums run over vector indexespA, pB , qA and uB , which are sets of quantum
numbers of 4f andn′l′ orbitals involved in the corresponding Slater determinants Det(pA),
Det(pB), Det(qA) and Det(uB):

pA = (4fk1(A), . . . 4fkNA
(A))

pB = (4fk1(B), . . . 4fkNB
(B))

qA = (4fk1(A), . . . 4fkNA−1(A))

uB = (4fk1(B), . . . 4fkNB
(B), n′l′kNB +1

(B)). (6)

QuantitiesCA
k (pA), CB

l (pB), CA
m(qA) and CB

n (uB) in (5) are the expansion coefficients.
Similarly, for two-ion wavefunctions we have

9kl(4fNA, 4fNB ) =
∑
pA

∑
pB

CA
k (pA)CB

l (pB) Det(pA + pB)

9mn(4fNA−1, 4fNB n′l′) =
∑
qA

∑
uB

CA
m(qA)CB

n (uB) Det(qA + uB) (7)

wherepA +pB andqA +uB are vector indices of Slater determinants for the joint electronic
system A+ B:

pA + pB = (4fk1(A), . . . 4fkNA
(A), 4fkNA+1(B), . . . 4fkNA+NB

(B))

qA + uB = (4fk1(A), . . . 4fkNA−1(A), 4fkNA
(B), . . . 4fkNA+NB −1(B), n′l′kNA+NB

(B)). (8)

We can therefore write

〈9k1(4fNA, 4fNB )|HAB |9mn(4fNA−1, 4fNB n′l′)〉 =
∑
pA

∑
pB

∑
qA

∑
uB

CA
k (pA)∗CB

1 (pB)∗CA
m(qA)

×CB
n (uA)〈 Det(pA + pB)|HAB | Det(qA + uB)〉. (9)
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This sum is easy to calculate because the matrix elements〈 Det(pA+pB)|HAB | Det(qA+uB)〉
are non-zero only if the determinants Det(pA + pB) and Det(qA + uB) differ from each
other by no more than two orbitals 4fi (A) andn′l′j (B)

〈 Det(pA + pB |HAB | Det(qA + uB)〉 = 〈4fi (A)|hAB |n′l′j (B)〉 = tij (4f, n′l′). (10)

Note that the one-electron operatorHeff is equivalent to the well-known second quantized
‘kinetic’ operator widely used in theoretical studies of exchange interactions in insulators
[10–16].

2.2.2. The spin Hamiltonian calculation procedure.Denoteϕ±
A = χA

0 (4fNA)± and ϕ±
B =

χB
0 (4fNB )± for wavefunctions of the ground CF level of ions A and B (where superscripts

‘+’ and ‘−’ stand for two components of the ground Kramers doublets). Our aim is to
obtain an effective exchange HamiltonianHeff from the HamiltonianH2 = H0+HAB , which
describes the energy spectrum of the pair of lanthanide ions in the vicinity of its ground
state.Heff acts within the space of wavefunctions of the fourfold degenerate ground level
of the unperturbed HamiltonianH0

ϕ+
Aϕ+

B ϕ−
Aϕ−

B ϕ+
Aϕ−

B ϕ−
Aϕ+

B . (11)

Because of the time-reversal symmetry, the HamiltonianHeff is to be invariant with
respect to the corresponding transformations of spinS = 1

2 components,(ϕ+
A )∗ → ϕ−

A ,
(ϕ−

A )∗ → −ϕ+
A , (ϕ+

B )∗ → ϕ−
B and(ϕ−

B )∗ → −ϕ+
B . Therefore, within the basis set (11)Heff

is represented by the following 4× 4 matrix:

Heff


ϕ+

Aϕ+
B

ϕ−
Aϕ−

B

ϕ+
Aϕ−

B

ϕ−
Aϕ+

B

 =


X a c d

a∗ X −d∗ −c∗

c∗ −d Y b

d∗ −c b∗ Y




ϕ+
Aϕ+

B

ϕ−
Aϕ−

B

ϕ+
Aϕ−

B

ϕ−
Aϕ+

B

 . (12)

This Hamiltonian can be obtained from the full effective HamiltonianH0 + HAB (acting
in the space X= X1 + X2) by its projection onto the sub-space (11). BecauseHAB has
no diagonal matrix elements, first-order perturbation does not contribute toHeff . In the
second-order perturbationHeff is obtained with the well-known formula for degenerate
levels

Heff =
∑
i 6=0

P0HABPiHABP0

E0 − Ei

(13)

where

P0 =
∑
n0

|n0〉〈n0| Pi =
∑
ni

|ni〉〈ni |

are projection operators for the ground levelE0 and excited levelsEi , respectively. The
latter are charge-transfer states A+B− and A−B+, whose wavefunctions we denote for
brevity Qmn(A → B) = 9mn(4fNA−1, 4fNB n′l′) andQmn(B → A) = 9mn(4fNAn′l′, 4fNB−1).
The matrix elements of the 4× 4 matrix (12) of the exchange HamiltonianHeff are defined
by the equation

〈pq|Heff |rs〉 = −
∑

Qmn(A→B)

〈pq|HAB |Qmn(A → B)〉〈Qmn(A → B)|HAB |rs〉
Emn(A → B)

−
∑

Qmn(B→A)

〈pq|HAB |Qmn(B → A)〉〈Qmn(B → A)|HAB |rs〉
Emn(B → A)

(14)
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wherep, r = ϕ±
A andq, s = ϕ±

B . The sums range over all charge-transfer statesQmn(A →
B) andQmn(B → A). QuantitiesEmn(A → B) andEmn(B → A) in the denominators are
charge-transfer energies, which are the differences between eigenvalues of the unperturbed
HamiltonianH0 for the ground stateϕ±

Aϕ±
B = χA

0 (4fNA)±χB
0 (4fNB )± and excited ionic states

Qmn(A → B) = χA
m(4fNA−1)χB

n (4fNB n′l′) or Qmn(B → A) = χA
m(4fNAn′l′)χB

n (4fNB−1).
Matrix elements〈ϕ±

Aϕ±
B |HAB |Qmn(A → B)〉 in the nominators of (14) are calculated with

equations (7) and (9). It is important to note that this perturbation series has a good
convergence, because in lanthanide systems transfer integralstij (4f, n′l′) are typically of
0.1 eV (see section 3.5), whereas charge-transfer energies are about 10 eV.

Heff can be transformed to the conventional exchange spin Hamiltonian written in terms
of components of the effective spinS = 1

2 of ions A and B, which are defined by

Sx
nϕ±

n = 1
2ϕ∓

n Sy
nϕ±

n = ∓(i/2)ϕ∓
n Sz

nϕ
±
n = ± 1

2ϕ±
n (15)

wheren = A or B. Using (12) and (15) we get

Heff = X + Y

2
+ 2

∑
µ

JµS
µ

AS
µ

B + 2
∑
µν

DµνS
µ

ASν
B + A(SA × SB) (16)

where µ = x, y or z. The exchange parametersJµ, Dµν and A are expressed through
matrix elements of the 4× 4 matrix (12)

Jx = (a + a∗ + b + b∗)/2 Dxy = Dyx = i(a − a∗)/2

Jy = (−a − a∗ + b + b∗)/2 Dyz = Dzy = i(c − c∗ + d − d∗)/2

Jz = X − Y Dxz = Dzx = (c + c∗ + d + d∗)/2

Ax = i(d − d∗ − c + c∗)
Ay = c + c∗ − d − d∗

Az = i(b∗ − b). (17)

Note that, according to (15), the quantization axesx, y andz for each ion are determined
by the choice of the wavefunctionsϕ∓

A andϕ∓
B of components of Kramers doublets. This

choice should relate the effective spin to the magnetic moment of the lanthanide ion, so it
depends on the specific CF symmetry and orientations of the principal axes ofg-tensors of
lanthanide ions A and B. In the general case, this problem is rather complicated (especially
for low CF symmetries) and is not discussed here. Below in this paper we deal only with
cubic symmetry of the CF potential, for which theg-tensor of the ground Kramers doublet
is isotropic and the magnetic moment of the lanthanide ion is simply proportional to the
effective spinS = 1

2. In this case the initial choice of the quantization axes is arbitrary and
their final orientation is determined under the condition that the resulting spin Hamiltonian
(16) is diagonal in spin components (see section 3.4.1).

2.3. A simple testing system

The efficiency of this approach can be illustrated for the simplest exchange pair of two
hydrogen-like atoms. Let each of the ions A and B have only one non-degenerate orbital
occupied by one electron,a(r) andb(r), respectively. For this system we can simply write
ϕ+

A = a(r)α, ϕ−
A = a(r)β, ϕ+

B = b(r)α and ϕ−
B = b(r)β for the wavefunctions of the

Kramers doublets, so the antisymmetrized two-ion wavefunctions (11) of the ground level
are

ϕ+
Aϕ+

B = 1√
2

[a(r1)b(r2) − a(r2)b(r1)]α1α2
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ϕ−
Aϕ−

B = 1√
2

[(a(r1)b(r2) − a(r2)b(r1)]β1β2

ϕ+
Aϕ−

B = 1√
2

[a(r1)b(r2)α1β2 − a(r2)b(r1)α2β1]

ϕ−
Aϕ+

B = 1√
2

[a(r1)b(r2)β1α2 − a(r2)b(r1)β2α1] (18)

wherern andαn = | 1
2〉, βn = | − 1

2〉 are, respectively, coordinates and spin eigenfunctions
of the nth electron (n = 1 and 2).

There are only two wavefunctionsQmn(B → A) and Qmn(A → B) referring to the
‘ionic’ states A−B+ and A+B−, in which two electrons are paired on ions A and B,
respectively,

Q(B → A) = 1√
2
a(r1)a(r2)(α1β2 − α2β1)

Q(A → B) = 1√
2
b(r1)b(r2)(α1β2 − α2β1). (19)

The energies of these states areUB and UA, respectively (which are often referred to as
Hubbard energies, describing repulsion between two electrons on the same ion). Matrix
elements〈ϕ±

Aϕ±
B |HAB |Q(A → B)〉 are easily expressed in terms of the transfer integral

t = 〈a|hAB |b〉 (table 1). Using (14) we have

X = a = c = d = 0 Y = −t2

(
1

UA

+ 1

UB

)
b = t2

(
1

UA

+ 1

UB

)
. (20)

Finally, using (17), we find

Jx = Jy = Jz = t2

(
1

UA

+ 1

UB

)
X + Y

2
= − t2

2

(
1

UA

+ 1

UB

)
Dxy = Dyz = Dxz = 0 Ax = Ay = Az = 0.

That is we obtain the usual antiferromagnetic Heisenberg spin Hamiltonian

Heff = 2t2

(
1

UA

+ 1

UB

)
(− 1

4 + SA · SB) (21)

as it should be for two exchange-coupled hydrogen-like atoms. In the particular case of
UA = UB = U we have

Heff = − t2

U
+ 4t2

U
SA · SB. (22)

This result coincides with that obtained in [10, 11].

Table 1. 〈ϕ±
A ϕ±

B |HAB |Qmn(A ↔ B)〉 matrix elements for the exchange pair of hydrogen-like
atoms.

Qmn(A ↔ B)

charge Ground state
transfer
states ϕ+

A ϕ+
B ϕ−

A ϕ−
B ϕ+

A ϕ−
B ϕ−

A ϕ+
B

A → B 0 0 t −t

B → A 0 0 t −t
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2.4. Bridging ligands, transfer integrals and superexchange pathways

In this section we develop a microscopic model to relate the transfer integralstij (which
are one-electron matrix elements of the perturbation HamiltonianHAB (4)) to the geometry
of the exchange pair and the electronic structure of magnetic ions and bridging ligands.
For two ions in direct contact with each other, the transfer integralstij coincide with the
conventional resonance integralsεij , which connect atomic orbitalsψi andφj referring to
different ions,

tij = εij =
∫

ψ∗
i

(
p2

2m
+ V (r)

)
φj dr. (23)

These values are common to quantum chemistry calculations and can be evaluated by
various methods. In particular, they can be computed from first principles or obtained using
different empirical methods such as the Wolfsberg–Helmholz approximation

εij = K

2
(E(ψi ) + E(φj ))Sij (24)

whereE(ψi ) and E(φj ) are the corresponding orbital energies,Sij is the overlap integral
between theψi andφj orbitals, andK is an empirical constant [21].

This problem is considerably complicated when going from a two-centre system to a
three-centre system like the lanthanide exchange pair Ln3+(A)–Ligand–Ln3+(B). In such
a system, electrons cannot transfer from ion A to ion B by passing through the bridging
ligand directly, because 4f atomic orbitals of different lanthanide ions overlap only with
the ns andnp valent orbitals of the ligand, whereas their direct overlap is negligible. As a
consequence, the Ln3+(A) → Ln3+(B) electron transfer process goes in two steps through
intermediate ionized states of the ligands. The general scheme of this virtual process is
shown in figure 2. Since typical ligands (such as F−, O2−, Cl− and S2−) have a closed
electronicns2np6 shell, they cannot accept an extra electron. Instead, in the first step an
electron moves from the ligand L to the lanthanide ion B forming the ionizedns1np6 or
ns2np5 configuration to the ligand. In the second step, another electron transfers from the
lanthanide ion A to the ligand L, restoring the originalns2np6 configuration. The resulting
transfer integralstij are evaluated in second-order perturbation through resonance integrals
and energies of electron transfer from the ligand to the lanthanide ion,1Eik(L → Ln3+),

tij = −
∑

k∈ns,np

εik(L → B)εkj (A → L)

1Eik(L → Ln3+)
. (25)

This procedure is quite valid for lanthanide systems, in which the ligand–metal charge-
transfer energy1Eik(L → Ln3+) is normally much larger than the corresponding resonance
integrals,εik(L → A) andεkj (L → B).

This model is not in conflict with the general approach developed in section 2.2, in
which all of the ligand’s orbitals are regarded as completely occupied and ligand electrons
are not considered. Indeed, in the scheme shown in figure 2 the number of electrons on
ligands is changed only in intermediate states, whereas all initial and final states have closed
electronic shells on ligands. This means that A–L–B→ A–L+–B− → A+–L–B− processes
are transformed to direct transitions AB→ A+B− upon the projectionH → H1 described
in section 2.2.

If there is more than one bridging ligand L1, . . . , Lq , then equation (25) is generalized
by

tij = −
ligands∑

q

∑
k∈ns,np

εik(Lq → B)εkj (A → Lq)

1Eik(Lq → Ln3+)
. (26)
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Figure 2. The general scheme of electron transfer processes in the Ln3+(A)–L–Ln3+(B)

exchange pair.

Each term in (26) corresponds to a certain electron transfer pathway. Note that the
resulting transfer integralstij (26) are additive for different pathways which involve different
ligands and different combinations of the initial, intermediate and final orbitals,i ∈ Ln3+(A),
k ∈ Lq and j ∈ Ln3+(B). However, this is not true for the resulting exchange parameters
Jµ, Dµν andA in the spin Hamiltonian (16), because contributions resulting from different
exchange pathways can differ both in magnitude and in sign, so some interference effects are
possible in the superexchange mechanism for ion pairs involving several bridging ligands.
Some of these effects were discussed earlier in [15, 16]. Note that our approach is more
general because equation (26) in combination with relations (14) describes all possible
electron transfer mechanisms in the M(A)–(L1, L2, . . . Ln)–M(B) exchange system involving
so-called ‘ring exchange’ and related processes [15, 16, 22].

Although this model is by no means a quantitative solution of the problem with
the transfer integrals, it nonetheless gives a useful background for a consistent analysis
of microscopic mechanisms of virtual transfers of electrons between magnetic ions via
intermediate-valent orbitals of ligands and allows evaluation of transfer integralstij in terms
of such quantum-mechanical quantities as overlap integrals and orbital energies. In section 3
this model is used for the M2L10 and M2L11 f1–f1 dimers to select electron transfer pathways
giving non-vanishing contributions to the spin Hamiltonian and to calculate transfer integrals.

3. Mechanisms of f1–f1 superexchange interactions

Application of this superexchange theory to actual lanthanide compounds has the difficulty
that a large number of excited charge-transfer statesQmn(A → B) are involved in
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calculations. For instance, for 4f3–4f3 → 4f2–4f35d electron transfer processes in a Nd3+–
Nd3+ pair this number is determined by the product of the numbers of states in the 4f2 and
4f35d configurations, 91× 3640≈ 300 000. This needs, therefore, numerical calculations.

In this paper we concentrate on the simplest case of an f1–f1 exchange pair, for which
an analytical study is still possible due to the comparatively small number ofQmn(A ↔ B)

states. We consider M2L10 and M2L11 dimers involving two equivalent lanthanide or actinide
ions M of f1 configuration (such as Ce3+, Pr4+, U5+ or Np6+). Each ion M is surrounded
by six ligands L forming a regular octahedron ML6 (figure 1). These dimers correspond,
respectively, to the 90◦ and 180◦ geometries of the M–L–M bridging groups, and they serve
as idealized models of exchange pairs in cubic crystals. In particular, the 90◦ geometry
occurs for nearest cations in the rock-salt-type structure and the 180◦ geometry is typical
of many cubic crystals, such as perovskites.

3.1. The ground electronic state off 1 ions

The ground state of an f1 ion in an octahedral ligand environment is a0
(1)
7 Kramers doublet

originating from the CF splitting of the lower2F5/2 manifold [23] (figure 3):

|0(1)
7′ ±〉 = 1√

6
[| ± 5

2〉 − √
5| ∓ 3

2〉]. (27)

Wavefunctionsϕ± = |0(1)
7′ ±〉 can be expressed through f orbitals (fm orbitals in the|lm〉

representation or f orbitals of the cubic basis set):

ϕ+ = 1√
42

(
√

6f3β − f2α − √
10f−1β + 5f−2α)

= 1√
21

(2fx(y2−z2)β + 2ify(z2−x2)β − 3ifxyzα + 2fz(x2−y2)α)

ϕ− = 1√
42

(
√

6f−3α − f−2β − √
10f1α + 5f2β)

= 1√
21

(−2fx(y2−z2)α + 2ify(z2−x2)α + 3ifxyzβ + 2fz(x2−z2)β) (28)

where thex, y andz axes are chosen as shown in figure 1.
In fact, the CF effect mixes wavefunctions of the ground0

(1)
7 level and excited0(2)

7 level
stemming from the upper2F7/2 manifold which contains fx3, fy3 and fz3 orbitals (figure 3).
This mixing is, however, rather small, even for f1 systems with strong CF effects, such as
UF−

6 and UCl−6 complexes [24, 25], so it can be neglected to a first approximation.

3.2. Excited charge-transfer statesA+B− andA−B+ of a f 1–f 1 pair

In charge-transfer states A+B− of a f1–f1 pair ion A has no electrons in the valence
shell whereas ion B has two electrons in the 4f2 or 4fn′l′ configuration, 4f0(A)–4f2(B)

or 4f0(A)–4f(B)n′l′(B) (the same is true for the back transition AB→ A−B+). Therefore,
charge-transfer functionsQmn(A → B) andQmn(B → A) coincide with the usual single-
ion wavefunctions of the relevant 4f2 or 4fn′l′ electronic configuration of ions B and A,
respectively. Below in this paper we take into account only the 4f5d configuration, which
seems to be the most important one for the f1–f1 superexchange (contributions of 4f5d and
4f2 configurations are compared in section 3.5).

We assume that charge-transfer energiesEmn(A → B) can be written asU + En(fd)

whereU is a constant andEn(fd) is the energy of thenth level of the 4f5d configuration
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Figure 3. The splitting of energy levels of f1 ions in an octahedral crystal field.

(in the case of a f1–f1 pair, the double indexmn in charge-transfer functionsQmn(A →
B) transforms to the single indexn because the indexm vanishes for the empty 4f0

configuration).
The energy structure of the 4f5d configuration of a free lanthanide ion is mainly

determined by Coulomb interaction between 4f and 5d electrons, which is described by three
CoulombF 2k(4f, 5d) and three exchangeG2k+1(4f, 5d) Slater parameters (wherek = 0, 1
and 2) [26]. The spin–orbit energy for 4f and 5d orbitals is of minor importance. The strong
CF effect splits the 5d level into the lower triply degenerate t2g level (5dxy , 5dyz and 5dzx
orbitals) and the upper doubly degenerate eg level (5dz2 and 5dx2−y2 orbitals). In addition,
a small CF splitting occurs for 4f states. The energy structure of the 4f5d configuration is
therefore rather complicated, so a more simple model has to be used, which, on the one hand,
allows an analytical study and, on the other hand, reflects the main features of the energy
structure of the 4f5d configuration. This model is based on the following assumptions.

(i) Intra-ionic Coulomb interaction between 4f and 5d electrons is described by one
parameterUf d corresponding to the spherical part of the electron–electron repulsion
potentialF 0(4f, 5d), whereas the non-spherical part (F 2(4f, 5d) andF 4(4f, 5d) parameters)
is neglected. In lanthanide ions, this parameter is typicallyUf d ≈ F 0(4f, 5d) ≈ 10 eV.
We also assume that theUf d parameter involves the energy difference between 4f and 5d
orbitals and the electron–hole interaction energygAB .

(ii) Spin–orbit energies of 4f and 5d states as well as the CF splitting energy of the 4f
state (≈ 100 cm−1) are neglected.

(iii) The CF splitting 10Dq between eg and t2g 5d levels is taken into account. The
CF effect increases the energy of the eg level by the value 6Dq and lowers the energy of
the t2g level by 4Dq. This splitting is normally of order 10Dq ≈ 2–3 eV for Ln3+ ions in
octahedral environment of six ligands [9].

(iv) Intra-ionic exchange interaction between 4f and 5d electrons is approximated by
one effective exchange parameterIf d instead of three exchange parametersG2k+1(4f, 5d)
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(k = 0, 1 and 2). In other words, we assume that the energy separation between triplet
states

3[f ldk]S1(Ms) = 1√
2
(4fl(r1)5dk(r2) − 4fl(r2)5dk(r1))S1(Ms) (29)

(whereS1(Ms) are triplet and spin functionsS1(+1) = α1α2, S1(0) = (α1β2 + α2β1)/
√

2
andS1(−1) = β1β2) and the corresponding singlet states

1[f ldk]S0 = 1√
2
(4fl(r1)5dk(r2) + 4fl(r2)5dk(r1))S0 (30)

(whereS0 = (α1β2 − α2β1)/
√

2 is the singlet spin function) of the 4f5d configuration are
the same for either pair of 4fl and 5dk orbitals (wherel = 3, 2, . . . ,−3 andk = xy, yz,
zx, z2 andx2 − y2) and is equal toIf d which is estimated byIf d ≈ G1(4f, 5d) ≈ 1–2 eV.
WavefunctionsQmn(A → B) and the corresponding charge-transfer energiesEmn(A ↔ B)

are listed in table 2.

Table 2. WavefunctionsQmn(A → B) and charge-transfer energiesEmn(A → B) of the M2L10

and M2L11 f1–f1 exchange dimers (4f5d configuration on ion B).

State Wavefunction EnergyEmn(A → B)

ϕ±
A ϕ±

B
1√
2(ϕ±

A (r1, σ1)ϕ
±
B (r2, σ2) − ϕ±

A (r2, σ2)ϕ
±
B (r1, σ1)) 0

ground state

3[f l dk ]S1(Ms) Uf d − If d − 4Dq

triplet states 1√
2(4fl (r1)5dk(r2) − 4fl (r2)5dk(r1))S1(Ms) (k = xy, yz or zx)

Uf d − If d + 6Dq

(k = z2 or x2 − y2)

1[f l dk ]S0 Uf d − 4Dq

singlet states 1√
2(4fl (r1)5dk(r2) + 4fl (r2)5dk(r1))S0 (k = xy, yz or zx)

Uf d + 6Dq

(k = z2 or x2 − y2)

The following notations are assumed:
σn = ± 1

2
l = 3, 2, . . . ,−3; k = xy, yz, zx, z2 or x2 − y2

S1(1) = α1α2, S1(0) = (1/
√

2)(α1β2 + β1α2)

S1(−1) = β1β2

S0 = (1/
√

2)(α1β2 − β1α2).

3.3. Electron transfer pathways and transfer integrals in theM2L10 andM2L11 f 1–f 1

dimers

We consider specific pathways of virtual transfers of electrons between 4f orbitals of ion A
and 5d orbitals of ion B via bridging ligands L in the M2L10 and M2L11 dimers and evaluate
the correspondingtij (4f, 5d) transfer integrals. Because only four of the seven f orbitals of
the cubic set are involved in the ground state wavefunctions (28), we need to derive transfer
integrals between these four 4f orbitals of the ion A (namely, 4fxyz, 4fz(x2−y2), 4fy(z2−x2)

and 4fx(y2−z2)) and five 5d orbitals of the ion B (5dz2 and 5dx2−y2 eg orbitals and 5dxy , 5dyz

and 5dzx t2g orbitals). To do this, we use equation (26) in which the resonance integralsεik

between 4f and 5d orbitals of lanthanide ions andns, np ligand orbitals are evaluated with
equation (24). We should therefore consider in detail the overlap between the lanthanide 4f
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or 5d orbitals and the ligand’s valency orbitals in the octahedral species ML6 (figures 4 and
5). Because of cubic symmetry, there are the following selection rules for non-vanishing
overlap integrals.

(i) 4fz(x2−y2), 4fy(z2−x2) and 4fx(y2−z2) orbitals overlap withnp orbitals in π -type
fashion. This group of overlap integrals is parametrized via one parameterSπ(4f, np) =
〈4fy(z2−x2)|npy〉.

(ii) 5dxy , 5dyz and 5dzx orbitals overlap withnp orbitals inπ -type fashion (figures 4(a),
4(e) and 5),Sπ(5d, np) = 〈5dxy |npx〉.

(iii) 5dz2 and 5dx2−y2 orbitals overlap both with thenp and with thens orbitals of
the ligand inσ -type fashion (figures 4(b)–(d)),Sσ (5d, np) = 〈5dz2|npz〉 and Sσ (5d, ns) =
〈5dz2|ns〉.

Using the Wolfsberg–Helmholz approximation (24) withK = 2 we can derive the
corresponding resonance integralsεik(4f, np) andεkj (5d, np) as

εik(4f, np) = 〈4fi |npk〉[E(4f) + E(np)]

εkj (5d, np) = 〈npk|5dj 〉[E(5d) + E(np)] (31)

whereE(4f), E(5d) andE(np) are the energies of the corresponding atomic orbitals. Note
that none of the 4f orbitals overlap with the ligand’sns orbitals. This means that the ligand’s
ns orbitals play no part in superexchange pathways and do not contribute to the resulting
exchange parameters either in M2L10 or in M2L11 dimers.

Using equations (26) and (31) we can now define the transfer integrals between 4f and
5d orbitals as

tij (4f, 5d) = −
ligands∑

q

∑
k∈np(Lq )

ε∗
ik(4f, np)εkj (5d, np)

1E(Lq → Ln3+)

= −
ligands∑

q

∑
k∈np(Lq )

〈4fi (A)|npk(Lq)〉〈npk(Lq)|5dj (A)〉
1E(Lq → Ln3+)

×[E(4f) + E(np)][E(5d) + E(np)] (32)

where ligand–lanthanide electron transfer energies1E(Lq → Ln3+) are assumed to be
the same both fornp(Lq) → 4f(Ln3+) and for np(Lq) → 5d(Ln3+) transfers. They can
be approximated by the difference between the corresponding orbital energies,1E(Lq →
Ln3+) ≈ E(4f) − E(np) ≈ E(5d) − E(np). In particular, for oxide compounds we have
E(2p) ≈ −15 eV, E(4f) ≈ −7 eV and1E(O2− → Ln3+) ≈ 8 eV. It follows from
(32) that thetij (4f, 5d) transfer integral is only non-vanishing if there is at least one
4fk(A) → npi (Lq) → 5d1(B) electron transfer pathway, in which the〈4fi |npk(Lq)〉 and
〈npk(Lq)|5dj 〉 overlap integrals are simultaneously non-zero. This leads to some selection
rules for non-vanishing transfer integrals which are different for the 90◦ and 180◦ geometries
of the exchange pair.

3.3.1. The 90◦ geometry. Overlap integrals between 4f(A) and 5d(B) lanthanide and
np(L1) andnp(L2) ligand orbitals in the M2L10 dimer expressed in terms of theSπ(4f, np),
Sπ(5d, np) and Sσ (5d, np) parameters are listed in table 3. Using these values and
equation (32), we can determine non-vanishing transfer integralstlk(4f–5d) through two
parametersTπσ andTππ ,

Tπσ = −Sπ(4f, np)Sσ (5d, np)

1E(L → Ln3+)
[E(4f) + E(np)][E(5d) + E(np)] (33a)
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Figure 4. Electron transfer pathways and overlaps of 4f and 5d lanthanide orbitals andns and
np valency orbitals of the bridging ligands in the M2L10 f1–f1 dimer. The cases (a) and (e)
correspond to electron transfer pathways 4f(A) → np(L) → 5d(B) of ππ type, whereas cases
(b), (c) and (d) correspond toπσ pathways (the resulting transfer integraltij (4f, 5d) of each
pathway is shown in the corresponding picture).
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Figure 5. Electron transfer pathways and overlaps of 4f and 5d lanthanide orbitals andns and
np valency orbitals of the bridging ligands in the M2L11 f1–f1 dimer. Two ππ pathways are
shown which have non-vanishing transfer integrals.

Tππ = −Sπ(4f, np)Sπ(5d, np)

1E(L → Ln3+)
[E(4f) + E(np)][E(5d) + E(np)]. (33b)

The Tπσ parameter corresponds to the electron transfer pathway in which the 4f(A) orbital
overlaps with thenp(L) orbital in π -type fashion, whereas 5d(B) andnp(L) orbitals overlap
in σ -type fashion as is the case for the 4f(A)z(x2−y2) → npz(L1) → 5d(B)z2 pathway
(figure 4(b)). Similarly, theTππ parameter refers to a pathway in which both 4f(A) and 5d(B)
orbitals overlap with the intermediate ligand’snp(L) orbitals in π -type fashion, as is the
case for the 4f(A)x(y2−z2) → npx(L2) → 5d(B)xy pathway (figure 4(a)). The corresponding
transfer integrals are given in table 4 and all electron transfer pathways resulting in non-
vanishing transfer integrals are shown in figures 4(a)–(e).

3.3.2. The 180◦ geometry. There are only two pathways in the M2L11 dimer (both of
ππ type), 4f(A)x(y2−z2) → npx(L) → 5d(B)zx and 4f(A)y(z2−x2) → npy(L) → 5d(B)yz

(figures 5(a) and (b)). As a result, 4f–5d transfer integrals are expressed only via one
parameter,Tππ (33b) (table 5).
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Table 3. Overlap integrals between 4f and 5f metal orbitals andns andnp valent orbitals of the bridging ligands in the M2L10 dimer.

Ligand orbitals
Metal
orbitals npx (L1) npy (L1) npz (L1) npx (L2) npy (L2) npz (L2) ns (L1) ns (L2)

4fxyz(A) 0 0 0 0 0 0 0 0
4fx(y2−z2)(A) Sπ (4f, np) 0 0 −Sπ (4f, np) 0 0 0 0
4fy(z2−x2)(A) 0 0 0 0 Sπ (4f, np) 0 0 0
4fz(x2−y2)(A) 0 0 −Sπ (4f, np) 0 0 0 0 0
5dxy(B) 0 0 0 Sπ (5d, np) 0 0 0 0
5dyz(B) 0 −Sπ (5d, np) 0 0 0 Sπ (5d, np) 0 0
5dzx(B) −Sπ (5d, np) 0 0 0 0 0 0 0
5dz2(B) 0 0 Sσ (5d, np) 0 Sσ (5d, np)/2 0 Sσ (5d, ns) −Sσ (5d, np)/2
5dx2−y2(B) 0 0 0 0 Sσ (5d, np)

√
3/2 0 0 −Sσ (5d, ns)

√
3/2
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Table 4. tij (4f, 5d) transfer integrals in the M2L10 dimer.

4fj (A) orbitalsa
5di (B)

orbitals 4fxyz 4fx(y2−z2) 4fy(z2−x2) 4fz(x2−y2)

5dxy 0 Tππ (L2) 0 0
5dyz 0 0 0 0
5dzx 0 Tππ (L1) 0 0
5dz2 0 0 −Tπσ /2 (L2) Tπσ (L1)

5dx2−y2 0 0 −Tπσ

√
3/2 (L2) 0

a The ligand contributing to the corresponding non-vanishing transfer integral is indicated in
parentheses.

Table 5. tij (4f, 5d) transfer integrals in the M2L11 dimer.

4fj (A) orbitals
5di (B)

orbitals 4fxyz 4fx(y2−z2) 4fy(z2−x2) 4fz(x2−y2)

5dxy 0 0 0 0
5dyz 0 0 Tππ 0
5dzx 0 −Tππ 0 0
5dz2 0 0 0 0
5dx2−y2 0 0 0 0

3.4. Effective spin Hamiltonians of thef 1–f 1 superexchange

Based on the above results we now derive effective spin Hamiltonians for the M2L10 and
M2L11 f1–f1 exchange dimers. Using theQmn(A → B) charge transfer wavefunctions from
table 2 we first calculate〈ϕ±

Aϕ±
B |HAB |Qmn(A → B)〉 two-ion matrix elements and then

derive the exchange parametersJµ, Dmν andA using charge transfer energiesEmn(A → B)

from table 2 and equations (14)–(17). Because ions A and B are equivalent, we take
into account A+B− states only and then multiply the result by a factor of two. Details of
calculation of the〈ϕ±

Aϕ±
B |HAB |Qmn(A → B)〉 matrix elements are presented in the appendix.

3.4.1. Spin Hamiltonian of theM2L10 dimer. Using theQmn(A → B) wavefunctions
from table 2 and transfer integrals from table 4, we calculate matrix elements
〈ϕ±

Aϕ±
B |HAB |Qmn(A → B)〉 for the M2L10 dimer (table 6). Replacing these matrix elements

into (14), we calculate the matrix elementsX, Y , a, b, c andd of the effective exchange
HamiltonianHeff (12) summing over 140Qmn(A → B) states of the 4f5d configuration:

X = −4T 2
πσ

21

(
3

Uf d − If d + 6Dq
+ 1

Uf d + 6Dq

)
−8T 2

ππ

441

(
29

Uf d − If d − 4Dq
+ 13

Uf d − 4Dq

)
Y = −4T 2

πσ

21

(
3

Uf d − If d + 6Dq
+ 1

Uf d + 6Dq

)
−8T 2

ππ

441

(
34

Uf d − If d − 4Dq
+ 8

Uf d − 4Dq

)
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Table 6. 〈ϕ±
A ϕ±

B |HAB |Qmn(A → B)〉 two-ion matrix elements for the M2L10 dimer.

Qmn(A → B)

charge Ground state
transfer
states ϕ+

A ϕ+
B ϕ−

A ϕ−
B ϕ+

A ϕ−
B ϕ−

A ϕ+
B

3[f 3 dxy ]S1(1) 0 0 0 0
3[f 2 dxy ]S1(1) 0 0 0 −Tππ

√
2/21

3[f 1 dxy ]S1(1) 0 Tππ

√
12/21 0 0

3[f 0 dxy ]S1(1) 0 0 0 0
3[f−1 dxy ]S1(1) 0 0 0 0
3[f−2 dxy ]S1(1) 0 0 0 Tππ

√
50/21

3[f−3 dxy ]S1(1) 0 −Tππ

√
20/21 0 0

3[f 3 dxy ]S1(0) 0 0 0 Tππ

√
6/21

3[f 2 dxy ]S1(0) Tππ/21 Tππ 5/21 0 0
3[f 1 dxy ]S1(0) 0 0 Tππ

√
10/21 0

3[f 0 dxy ]S1(0) 0 0 0 0
3[f−1 dxy ]S1(0) 0 0 0 −Tππ

√
10/21

3[f−2 dxy ]S1(0) −Tππ 5/21 −Tππ/21 0 0
3[f−3 dxy ]S1(0) 0 0 −Tππ

√
6/21 0

3[f 3 dxy ]S1(−1) −Tππ

√
12/21 0 0 0

3[f 2 dxy ]S1(−1) 0 0 −Tππ

√
50/21 0

3[f 1 dxy ]S1(−1) 0 0 0 0
3[f 0 dxy ]S1(−1) 0 0 0 0
3[f−1 dxy ]S1(−1) Tππ

√
20/21 0 0 0

3[f−2 dxy ]S1(−1) 0 0 Tππ

√
2/21 0

3[f−3 dxy ]S1(−1) 0 0 0 0

1[f 3 dxy ]S0 0 0 0 −Tππ

√
6/21

1[f 2 dxy ]S0 Tππ/21 −Tππ 5/21 0 0
1[f 1 dxy ]S0 0 0 Tππ

√
10/21 0

1[f 0 dxy ]S0 0 0 0 0
1[f−1 dxy ]S0 0 0 0 Tππ

√
10/21

1[f−2 dxy ]S0 −Tππ 5/21 Tππ/21 0 0
1[f−3 dxy ]S0 0 0 −Tππ

√
6/21 0

3[f 3 dzx]S1(1) 0 0 0 0
3[f 2 dzx]S1(1) 0 0 0 −Tππ

√
2/21

3[f 1 dzx]S1(1) 0 Tππ

√
12/21 0 0

3[f 0 dzx]S1(1) 0 0 0 0
3[f−1 dzx]S1(1) 0 0 0 0
3[f−2 dzx]S1(1) 0 0 0 Tππ

√
50/21

3[f−3 dzx]S1(1) 0 −Tππ

√
20/21 0 0

3[f 3 dzx]S1(0) 0 0 0 Tππ

√
6/21

3[f 2 dzx]S1(0) Tππ/21 Tππ 5/21 0 0
3[f 1 dzx]S1(0) 0 0 Tππ

√
10/21 0

3[f 0 dzx]S1(0) 0 0 0 0
3[f−1 dzx]S1(0) 0 0 0 −Tππ

√
10/21

3[f−2 dzx]S1(0) −Tππ 5/21 −Tππ/21 0 0
3[f−3 dzx]S1(0) 0 0 −Tππ

√
6/21 0

3[f 3 dzx]S1(−1) −Tππ

√
12/21 0 0 0

3[f 2 dzx]S1(−1) 0 0 −Tππ

√
50/21 0

3[f 1 dzx]S1(−1) 0 0 0 0
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Table 6. (Continued)

Qmn(A → B)

charge Ground state
transfer
states ϕ+

A ϕ+
B ϕ−

A ϕ−
B ϕ+

A ϕ−
B ϕ−

A ϕ+
B

3[f 0 dzx]S1(−1) 0 0 0 0
3[f−1 dzx]S1(−1) Tππ

√
20/21 0 0 0

3[f−2 dzx]S1(−1) 0 0 Tππ

√
2/21 0

3[f−3 dzx]S1(−1) 0 0 0 0

1[f 3 dzx]S0 0 0 0 −Tππ

√
6/21

1[f 2 dzx]S0 Tππ/21 −Tππ 5/21 0 0

1[f 1 dzx]S0 0 0 Tππ

√
10/21 0

1[f 0 dzx]S0 0 0 0 0
1[f−1 dzx]S0 0 0 0 Tππ

√
10/21

1[f−2 dzx]S0 −Tππ 5/21 Tππ/21 0 0
1[f−3 dzx]S0 0 0 −Tππ

√
6/21 0

3[f 3 dz2]S1(1) 0 0 0 0
3[f 2 dz2]S1(1) Tπσ

√
2/21 0 0 −iTπσ

√
2/42

3[f 1 dz2]S1(1) 0 −iTπσ

√
20/42 Tπσ

√
20/21 0

3[f 0 dz2]S1(1) 0 0 0 0
3[f−1 dz2]S1(1) 0 0 0 0
3[f−2 dz2]S1(1) −Tπσ

√
50/21 0 0 iTπσ

√
50/42

3[f−3 dz2]S1(1) 0 iTπσ

√
12/42 −Tπσ

√
12/21 0

3[f 3 dz2]S1(0) −Tπσ

√
6/21 0 0 iTπσ

√
6/42

3[f 2 dz2]S1(0) −iTπσ /42 iTπσ 5/42 −Tπσ 5/21 Tπσ /21
3[f 1 dz2]S1(0) 0 Tπσ

√
10/21 −iTπσ

√
10/42 0

3[f 0 dz2]S1(0) 0 0 0 0
3[f−1 dz2]S1(0) Tπσ

√
10/21 0 0 −iTπσ

√
10/42

3[f−2 dz2]S1(0) iTπσ 5/42 −iTπσ /42 Tπσ /21 −Tπσ 5/21
3[f−3 dz2]S1(0) 0 −Tπσ

√
6/21 iTπσ

√
6/42 0

3[f 3 dz2]S1(−1) iTπσ

√
12/42 0 0 −Tπσ

√
12/21

3[f 2 dz2]S1(−1) 0 −Tπσ

√
50/21 iTπσ

√
50/42 0

3[f 1 dz2]S1(−1) 0 0 0 0
3[f 0 dz2]S1(−1) 0 0 0 0
3[f−1 dz2]S1(−1) −iTπσ

√
20/42 0 0 Tπσ

√
20/21

3[f−2 dz2]S1(−1) 0 Tπσ

√
2/21 −iTπσ

√
2/42 0

3[f−3 dz2]S1(−1) 0 0 0 0

1[f 3 dz2]S0 Tπσ

√
6/21 0 0 −iTπσ

√
6/42

1[f 2 dz2]S0 −iTπσ /42 −iTπσ 5/42 Tπσ 5/21 Tπσ /21
1[f 1 dz2]S0 0 Tπσ

√
10/21 −iTπσ

√
10/42 0

1[f 0 dz2]S0 0 0 0 0
1[f−1 dz2]S0 −Tπσ

√
10/21 0 0 iTπσ

√
10/42

1[f−2 dz2]S0 iTπσ 5/42 iTπσ /42 −Tπσ /21 −Tπσ 5/21
1[f−3 dz2]S0 0 −Tπσ

√
6/21 iTπσ

√
6/42 0

3[f 3 dx2−y2]S1(1) 0 0 0 0
3[f 2 dx2−y2]S1(1) 0 0 0 −iTπσ

√
6/42

3[f 1 dx2−y2]S1(1) 0 −iTπσ

√
15/21 0 0

3[f 0 dx2−y2]S1(1) 0 0 0 0
3[f−1 dx2−y2]S1(1) 0 0 0 0
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Table 6. (Continued)

Qmn(A → B)

charge Ground state
transfer
states ϕ+

A ϕ+
B ϕ−

A ϕ−
B ϕ+

A ϕ−
B ϕ−

A ϕ+
B

3[f−2 dx2−y2]S1(1) 0 0 0 iTπσ

√
150/42

3[f−3 dx2−y2]S1(1) 0 iTπσ /7 0 0

3[f 3 dx2−y2]S1(0) 0 0 0 iTπσ

√
2/14

3[f 2 dx2−y2]S1(0) −iTπσ

√
3/42 iTπσ

√
75/42 0 0

3[f 1 dx2−y2]S1(0) 0 0 −iTπσ

√
30/42 0

3[f 0 dx2−y2]S1(0) 0 0 0 0
3[f−1 dx2−y2]S1(0) 0 0 0 −iTπσ

√
30/42

3[f−2 dx2−y2]S1(0) iTπσ

√
75/42 −iTπσ

√
3/42 0 0

3[f−3 dx2−y2]S1(0) 0 0 iTπσ

√
2/14 0

3[f 3 dx2−y2]S1(−1) Tπσ /7 0 0 0
3[f 2 dx2−y2]S1(−1) 0 0 iTπσ

√
150/42 0

3[f 1 dx2−y2]S1(−1) 0 0 0 0
3[f 0 dx2−y2]S1(−1) 0 0 0 0
3[f−1 dx2−y2]S1(−1) −iTπσ

√
15/21 0 0 0

3[f−2 dx2−y2]S1(−1) 0 0 −iTπσ

√
6/42 0

3[f−3 dx2−y2]S1(−1) 0 0 0 0
1[f 3 dx2−y2]S0 0 0 0 −iTπσ

√
2/14

1[f 2 dx2−y2]S0 −iTπσ

√
3/42 −iTπσ

√
75/42 0 0

1[f 1 dx2−y2]S0 0 0 −iTπσ

√
30/42 0

1[f 0 dx2−y2]S0 0 0 0 0
1[f−1 dx2−y2]S0 0 0 0 iTπσ

√
30/42

1[f−2 dx2−y2]S0 iTπσ

√
75/42 iTπσ

√
3/42 0 0

1[f−3 dx2−y2]S0 0 0 iTπσ

√
2/14 0

All 〈ϕ±
A ϕ±

B |HAB |Qmn(A → B)〉 matrix elements involving the dyz orbital vanish.

a = Jπσ

2
− Jππ

2
b = Jπσ

2
c = d = −i

Jπσ

4
(34)

where

Jπσ = 40T 2
πσ

441

(
1

Uf d − If d + 6Dq
− 1

Uf d + 6Dq

)
≈ 40

441

T 2
πσ If d

(Uf d + 6Dq)2
(35a)

Jππ = 80T 2
ππ

441

(
1

Uf d − If d − 4Dq
− 1

Uf d − 4Dq

)
≈ 80

441

T 2
ππIf d

(Uf d − 4Dq)2
. (35b)

Using equation (17) we find the exchange parameters of the spin-Hamiltonian (16) of the
M2L10 dimer

Jx = Jπσ − Jππ

2
Jy = Jππ

2
Jz = Jππ

2

Dyz = Jπσ

2
Dxy = Dxz = 0 Ax = Ay = Az = 0. (36)

It is seen from (36) that the resulting spin Hamiltonian of the M2L10 f1–f1 dimer contains
the non-diagonal termsDµνS

µ

ASν
B . To diagonalize this spin Hamiltonian, we transform the
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x, y andz axes to newx ′, y ′ andz′ axes by an anticlockwise rotation about thex axis by
the angle 45◦ as shown in figure 6. Upon this rotationSµ

n components transform as

Sy
n = 1√

2
(Sy ′

n + Sz′
n ) Sx

n = Sx ′
n Sz

n = 1√
2
(Sy ′

n − Sz′
n ). (37)

Omitting the spin-independent term(X + Y )/2, we finally have

H = J ′
x ′S

x ′
A Sx ′

B + J ′
y ′S

y ′
A S

y ′
B + J ′

z′S
z′
ASz′

B (38)

where

J ′
x ′ = 2Jπσ − Jππ J ′

y ′ = Jπσ + Jππ J ′
z′ = −Jπσ + Jππ . (39)

The principal spin quantization axesx ′, y ′ andz′ of the diagonalized spin Hamiltonian (38)
are shown in figure 6.

Figure 6. Spin quantization axesx′, y′ and z′ of the diagonalized spin Hamiltonian of the
M2L10 f1–f1 dimer.

It can be seen from (38) and (39) that the anisotropy of the 90◦ f1–f1 superexchange
is so pronounced that it is difficult to define whether the spin Hamiltonian (38) is
antiferromagnetic or ferromagnetic because the exchange constantsJµ (39) may be of
opposite sign,

Jx ′ > 0

Jy ′ > 0

Jz′ < 0

 if Jπσ > Jππ

Jx ′ < 0

Jy ′ > 0

Jz′ > 0

 if Jππ > 2Jπσ . (40)

It should be stressed that the contribution of an individualQmn(A ↔ B) charge-transfer
state to the exchange parametersJµ is of orderT 2

πσ /Uf d , whereas the resulting exchange
parameters (35) are of a smaller order of magnitude,T 2

πσ If d/U2
f d . It can be seen from

(35) that theJµ values are the sum of two terms of orderT 2
πσ /Uf d which are similar in

magnitude but opposite in sign. This implies that allQmn(A ↔ B) states should be involved
in the spin Hamiltonian calculation in order to obtain a physically consistent result.

3.4.2. The spin Hamiltonian for theM2L11 dimer. The spin Hamiltonian of the M2L11 f1–
f1 dimer is derived by the same procedure as that employed above for the M2L10 dimer.
Again, using table 2 and transfer integrals from table 5, we calculate matrix elements
〈ϕ±

Aϕ±
B |HAB |Qmn(A ↔ B)〉 (table 7). Making use of equation (14), we have

X = −8T 2
ππ

441

(
29

Uf d − If d − 4Dq
+ 13

Uf d − 4Dq

)
Y = −8T 2

ππ

441

(
34

Uf d − If d − 4Dq
+ 8

Uf d − 4Dq

)
(41)
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anda = b = c = d = 0.
Using (17) we find

Jx = Jy = 0 Dxy = Dyz = Dxz = 0 A = 0 Jz = Jππ (42)

whereJππ is defined by (35a). Thus, we find that the 180◦ f1–f1 superexchange is anisotropic
and described by the antiferromagnetic Ising spin Hamiltonian

H = X + Y

2
+ JππSz

ASz
B (43)

where thez axis direction connects ions A and B (figure 1(b)).
It can be seen from (35) that the CF splitting of 5d states 10Dq has a little influence on

the exchange parameters, sinceUf d � Dq. This is not surprising, because the CF potential
does not couple 4f and 5d states due to its one-body nature.

3.5. Estimation of thef 1–f 1 superexchange parameters.

It is important to estimate the exchange parameters and to compare contributions of 4f5d and
4f2 configurations. We calculated〈4f|2p〉 and〈5d|2p〉 overlap integrals for oxide lanthanide
compounds using radial wavefunctions for 4f lanthanide orbitals and 2p oxygen orbitals
available in the literature [27, 28] and 5d lanthanide wavefunctions obtained from atomicXα

SW calculations. We found that the maximum overlaps areSσ (4f, 2p) ≈ Sπ(4f, 2p) = 0.02–
0.03,Sσ (5d, 2p) = 0.15 andSπ(5d, 2p) = 0.1, respectively. Employing the typical orbital
energiesE(4f) = −7 eV, E(5d) = −5 eV andE(2p) = −15 eV, we find from (33) that
Tπσ ≈ Tππ = t (4f, 5d) ≈ 0.1 eV andt (4f, 4f) ≈ 0.02–0.03 eV. Assuming thatUf d = 10 eV
andIf d ≈ G1(4f, 5d) = 1–2 eV we get an estimation

J ≈ t (4f, 5d)2If d

U2
f d

= (1–2) × 10−4 eV ≈ 1–2 cm−1 (44)

which is quite consistent with the experimental exchange parameters normally observed
in insulating lanthanide compounds [1–5]. Insofar as the role of 4f–4f charge transfers
in the superexchange mechanism is concerned, the resulting exchange parameters of order
J ≈ t2(4f–4f)/Uff are expected, whereUff is the energy of the Coulomb repulsion between
two 4f electrons on one lanthanide ion. This energy is estimated byF 0(4f, 4f) ≈ 10 eV, so
using t (4f, 4f) = 0.02–0.03 we have

J ≈ t2(4f, 4f)

Uff

= (4–9) × 10−5 eV ≈ 0.5–1 cm−1. (45)

We can therefore conclude that the 4f–5d and 4f–4f charge-transfer processes give
comparable contributions to the exchange parameters, so both these superexchange
mechanisms should be taken into account. In this paper, however, only the 4f–5d mechanism
has been considered.

In actinide compounds, 5f and 6d orbitals overlap with the ligand environment much
better than lanthanide 4f and 5d orbitals do (this is especially true for tetravalent and
pentavalent actinide compounds). As a consequence, similar calculations result in an
estimationJ ≈ 10–30 cm−1, which is consistent with the available experimental data
(see below).
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Table 7. 〈ϕ±
A ϕ±

B |HAB |Qmn(A → B)〉 two-ion matrix elements for the M2L11 dimer.

Qmn(A → B)

charge Ground state
transfer
states ϕ+

A ϕ+
B ϕ−

A ϕ−
B ϕ+

A ϕ−
B ϕ−

A ϕ+
B

3[f 3 dzx]S1(1) 0 0 0 0
3[f 2 dzx]S1(1) 0 0 0 Tππ

√
2/21

3[f 1 dzx]S1(1) 0 Tππ

√
20/21 0 0

3[f 0 dzx]S1(1) 0 0 0 0
3[f−1 dzx]S1(1) 0 0 0 0
3[f−2 dzx]S1(1) 0 0 0 −Tππ

√
50/21

3[f−3 dzx]S1(1) 0 −Tππ

√
12/21 0 0

3[f 3 dzx]S1(0) 0 0 0 −Tππ

√
6/21

3[f 2 dzx]S1(0) −Tππ/21 −Tππ 5/21 0 0
3[f 1 dzx]S1(0) 0 0 −Tππ

√
10/21 0

3[f 0 dzx]S1(0) 0 0 0 0
3[f−1 dzx]S1(0) 0 0 0 Tππ

√
10/21

3[f−2 dzx]S1(0) Tππ 5/21 Tππ/21 0 0
3[f−3 dzx]S1(0) 0 0 Tππ

√
6/21 0

3[f 3 dzx]S1(−1) Tππ

√
12/21 0 0 0

3[f 2 dzx]S1(−1) 0 0 Tππ

√
50/21 0

3[f 1 dzx]S1(−1) 0 0 0 0
3[f 0 dzx]S1(−1) 0 0 0 0
3[f−1 dzx]S1(−1) −Tππ

√
20/21 0 0 0

3[f−2 dzx]S1(−1) 0 0 −Tππ

√
2/21 0

3[f−3 dzx]S1(−1) 0 0 0 0

1[f 3 dzx]S0 0 0 0 Tππ

√
6/21

1[f 2 dzx]S0 −Tππ/21 Tππ 5/21 0 0
1[f 1 dzx]S0 0 0 −Tππ

√
10/21 0

1[f 0 dzx]S0 0 0 0 0
1[f−1 dzx]S0 0 0 0 −Tππ

√
10/21

1[f−2 dzx]S0 Tππ 5/21 −Tππ/21 0 0
1[f−3 dzx]S0 0 0 Tππ

√
6/21 0

3[f 3 dyz]S1(1) 0 0 0 0
3[f 2 dyz]S1(1) 0 0 0 −iTππ

√
2/21

3[f 1 dyz]S1(1) 0 −iTππ

√
20/21 0 0

3[f 0 dyz]S1(1) 0 0 0 0
3[f−1 dyz]S1(1) 0 0 0 0
3[f−2 dyz]S1(1) 0 0 0 iTππ

√
50/21

3[f−3 dyz]S1(1) 0 iTππ

√
12/21 0 0

3[f 3 dyz]S1(0) 0 0 0 iTππ

√
6/21

3[f 2 dyz]S1(0) −iTππ/21 iTππ 5/21 0 0
3[f 1 dyz]S1(0) 0 0 −iTππ

√
10/21 0

3[f 0 dyz]S1(0) 0 0 0 0
3[f−1 dyz]S1(0) 0 0 0 −iTππ

√
10/21

3[f−2 dyz]S1(0) iTππ 5/21 −iTππ/21 0 0
3[f−3 dyz]S1(0) 0 0 iTππ

√
6/21 0

3[f 3 dyz]S1(−1) iTππ

√
12/21 0 0 0

3[f 2 dyz]S1(−1) 0 0 iTππ

√
50/21 0

3[f 1 dyz]S1(−1) 0 0 0 0
3[f 0 dyz]S1(−1) 0 0 0 0
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Table 7. (Continued)

Qmn(A → B)

charge Ground state
transfer
states ϕ+

A ϕ+
B ϕ−

A ϕ−
B ϕ+

A ϕ−
B ϕ−

A ϕ+
B

3[f−1 dyz]S1(−1) −iTππ

√
20/21 0 0 0

3[f−2 dyz]S1(−1) 0 0 −iTππ

√
2/21 0

3[f−3 dyz]S1(−1) 0 0 0 0

1[f 3 dyz]S0 0 0 0 −iTππ

√
6/21

1[f 2 dyz]S0 −iTππ/21 −iTππ 5/21 0 0
1[f 1 dyz]S0 0 0 −iTππ

√
10/21 0

1[f 0 dyz]S0 0 0 0 0
1[f−1 dyz]S0 0 0 0 iTππ

√
10/21

1[f−2 dyz]S0 iTππ 5/21 iTππ/21 0 0
1[f−3 dyz]S0 0 0 iTππ

√
6/21 0

All 〈ϕ±
A ϕ±

B |HAB |Qmn(A → B)〉 matrix elements involving the dz2, dx2−y2 or dxy orbitals vanish.

4. Discussion

It can be seen from the above analysis that strong anisotropy of 90◦ and 180◦ f1–f1

superexchange is the result of a complex interplay of spin–orbit coupling, the CF effect,
intra-ionic exchange and Coulomb interactions between 4f and 5d electrons, and anisotropic
overlap between lanthanide 4f and 5d orbitals andnp valent orbitals of the bridging
ligands. It is seen from the comparison between the spin Hamiltonians (38) and (43)
of the M2L10 and M2L11 dimers that the geometry of the dimer plays a decisive role in the
f1–f1 superexchange mechanism. In particular, the Ln3+–L–Ln3+ angles and good overlap
between the lanthanide’s and the ligand’s orbitals in the dimers turns out to be even more
important than the Ln3+–Ln3+ distance. The symmetry of the ligand environment around
the lanthanide ions is also important because the CF effect forms wavefunctionsϕ±

A andϕ±
B

of the ground Kramers doublets. These results show that a strong exchange anisotropy in
f systems can occur even in the absence of the CF anisotropy and thus cannot be ascribed
only to the latter. Further complications of the exchange mechanism are expected for low
CF symmetries.

It should be noted once again that the spin Hamiltonian of the M2L10 dimer is not
additive with respect to two bridging ligands. This could be shown from two independent
spin Hamiltonian calculations for the M2L10 dimer with one of the bridging ligands removed.
We found that the sum of two resulting spin Hamiltonians did not coincide with the total
spin Hamiltonian (38).

It is interesting to discuss magnetic properties of some compounds containing f1 ions
in the light of the above results. Mixed uranium (V) oxides MUO3 (where M= Li, Na,
K or Rb) crystallize in the pervoskite-type structure, for which the M2L11 dimer serves as
a model cluster to describe the 180◦ superexchange interaction between two neighbouring
U5+(5f1) ions. Similarly, the M2L10 dimer is a model of the 90◦ f1–f1 superexchange in
Li 3UO4. This compound has a NaCl-type structure with a slight tetragonal distortion, in
which cationic sites are occupied by Li+ and U5+ ions in the ratio 3:1 [6, 7].

There is an interesting correlation between the structure and magnetic properties of the
MUO3 compounds. KUO3 and RbUO3 crystallize in a regular cubic perovskite structure
and reveal no phase magnetic transitions in the magnetic susceptibility curves [7]. In
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contrast, NaUO3 and LiUO3 have distorted pervoskite structures [6, 7] and exhibit unusual
magnetic properties. Thus, there is a magnetic phase transition atTN ≈ 32 K in NaUO3

followed by a sharp peak in the magnetic susceptibility curve [6]. LiUO3 has an unusual
magnetic transition atTn ≈ 19 K which is accompanied by a rapid increase in the magnetic
susceptibility in the vicinity of the transition point [29]. It is surprising that the magnetic
susceptibilities of NaUO3 and LiUO3 below TN depend on the applied magnetic field and
increase with its increase [6, 7]. A very similar behaviour has recently been found in BaPrO3

(orthorhombically distorted perovskite,TN = 11.5 K) [30]. This magnetic behaviour is quite
dissimilar to that of usual antiferromagnets and is indicative of strongly anisotropic 5f1–
5f1 exchange interactions in these compounds. Similar phenomena were also observed in
Li 3UO4 (TN ≈ 6 K) [29].

Unusual magnetic properties of these U(5+) and Pr(4+) oxides can be qualitatively
rationalized in the light of the above results for the f1–f1 superexchange. The spin
Hamiltonian of the high symmetry KUO3 and RbUO3 perovskites is obtained by a
generalization of the 180◦ f1–f1 spin Hamiltonian (43),

H = Jππ

∑
〈ij〉

(Si · rij )(Sj · rij )

|rij |2 (46)

where the sum〈ij〉 runs over all pairs of neighbouring f1 ions in the simple cubic
lattice andrij = ri − rj is a vector connecting ionsi and j . The Hamiltonian (46)
is formally antiferromagnetic and resembles the anisotropic part of the magnetic dipole–
dipole HamiltonianµAµB/r3

AB − 3(µArAB)(µBrAB)/r5
AB albeit having the opposite sign

and being of quite different origin. Although the ground state of this Hamiltonian is
unknown, one has every reason to anticipate that spin fluctuations in this system are too
strong for a magnetically ordered state to exist, as is the case in one- and two-dimensional
antiferromagnets. We suggest therefore that this leads to the absence of magnetic ordering
in KUO3 and RbUO3. In contrast, deviations from the regular perovskite structure in
LiUO3, NaUO3 and BaPrO3 would result in the appearance of the off-diagonalDµνS

µ

i Sν
j and

antisymmetricalA(Si×Sj ) terms in the spin Hamiltonian which can cause magnetic ordering
of a complex non-collinear spin structure. This suggestion gives a reasonable explanation of
the field-dependence of the magnetic susceptibility in LiUO3, NaUO3 and BaPrO3 belowTN ,
because an external magnetic field can have an effect on the angles between non-collinear
magnetic moments of f1 ions. A similar reason seems to be responsible for the magnetic
properties of Li3UO4, whose exchange spin Hamiltonian is derived by a generalization of
the spin Hamiltonian (43) and is therefore even more complicated than (46).

5. Conclusion

A modified superexchange theory has been developed and used for a quantitative study of
exchange interactions between two f1 ions bridged by common diamagnetic ligands. We
have considered in detail the role of the CF effect, charge-transfer excited states A+B−

and A−B+, and superexchange pathways for the simples M2L10 and M2L11 f1–f1 exchange
dimers. Spin Hamiltonians of the 90◦ (M2L10 dimer) and 180◦(M2L11) f1–f1 superexchange
are found to be extremely anisotropic. We have shown that this anisotropy is a result of
a complex combination of spin–orbit coupling, the CF effect, intra-ionic electron–electron
interactions and anisotropic overlaps between 4f and 5d lanthanide orbitals andnp valent
orbitals of the bridging ligands.

To understand more of the basics of exchange interaction in f systems, we tried to
perform an analytical study for model systems rather than numerical calculations. However,
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further analysis of exchange interactions for many-electron f ions in actual lanthanide and
actinide compounds demands the development of numerical techniques.

Acknowledgments

The author is indebted to Professor K W H Stevens for valuable discussions. This work was
supported in part by the Russian Foundation for Fundamental Research, grant 95-02-06180a.

Appendix. Calculation of 〈ϕ±
Aϕ±

B|HAB|Qmn(A → B)〉 two-ion matrix elements

We illustrate the calculation procedure for the〈ϕ±
Aϕ±

B |HAB |Qmn(A → B)〉 two-ion matrix
elements involved in (14). Consider a specific non-vanishing matrix element, say the
〈ϕ+

Aϕ+
B |HAB |3[f 2dz2]S1(1)〉 one for the M2L10 dimer (table 6). Using table 2, we have

〈ϕ+
Aϕ+

B |HAB |3[f 2dz2]S1(1)〉 = 〈(1/
√

2)(ϕ+
A (r1, σ1)ϕ

+
B (r2, σ2)

−ϕ+
A (r2, σ2)ϕ

+
B (r1, σ1))|HAB |(1/

√
2)(fB2 (r1) dB

z2(r2)

−fB2 (r1) dB
z2(r2))α1α2〉

= 〈ϕ+
A (r1, σ1)ϕ

+
B (r2, σ2)|HAB |fB2 (r1) dB

z2(r2)α1α2〉
−〈ϕ+

A (r1, σ1)ϕ
+
B (r2, σ2)|HAB |fB2 (r2) dB

z2(r1)α1α2〉 (A.1)

SinceHAB is a one-electron operator,HAB = hAB(1) + hAB(2), we can re-write (A.1) as

〈ϕ+
A (r1, σ1)|hAB(1)|fB2 (r1)α1〉〈ϕ+

B (r2, σ2)| dB
z2(r2)α2〉

+〈ϕ+
A (r1, σ1)|fB2 (r1)α1〉〈ϕ+

B (r2, σ2)|hAB(2)| dB
z2(r2)α2〉

−〈ϕ+
A (r1, σ1)|hAB(1)| dB

z2(r1)α1〉〈ϕ+
B (r2, σ2)|fB2 (r2)α2〉

−〈ϕ+
A (r1, σ1)| dB

z2(r1)α1〉〈ϕ+
B (r2, σ2)|hAB(2)|fB2 (r2)α2〉. (A.2)

Because of the orthogonality relations〈ϕ+
A (r1, σ1)|fB2 (r1)α1〉=0 and〈ϕ+

B (r2, σ2)| dB
z2(r2)α2〉

= 0, only the third term in (A.2) is retained:

〈ϕ+
Aϕ+

B |HAB |3[f 2 dz2]S1(1)〉 = −〈ϕ+
A (r1, σ1)|hAB(1)| dB

z2(r1)α1〉〈ϕ+
B (r2, σ2)|fB2 (r2)α2〉. (A.3)

It is convenient to expressϕ+
A (r1, σ1) via f orbitals of the cubic set andϕ+

B (r2, σ2) via the
|lm〉 basis set from equation (28) in the text

ϕ+
A (r1, σ1) = 1√

21
[2fA

x(y2−z2)
(r1)β1 + 2ifA

y(z2−x2)
(r1)β1 − 3ifAxyz(r1)α1 + 2fA

z(x2−y2)
(r1)α1]

ϕ+
A (r2, σ2) = 1√

42
[
√

6fB3 (r2)β2 − fB2 (r2)α2 − √
10fB−1(r2)β2 + 5fB−2(r2)α2]. (A.4)

Using the transfer integral〈fA
z(x2−y2)

α1|hAB(1)| dB
z2α1〉 = Tπσ from table 4 we get

〈ϕ+
A (r1, σ1)|hAB(1)| dB

z2(r1)α1〉 = 2√
21

Tπ 〈ϕ+
A (r2, σ2)|fB2 (r2)α2〉 = − 1√

42
(A.5)

and, finally, we obtain

〈ϕ+
Aϕ−

B |HAB |3[f 2 dz2]S1(1)〉 =
√

2

21
Tπσ .
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